Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
DimensionCardinalityTimeSeriesQuery.graphql.ts4.89 kB
/** * @generated SignedSource<<4fc9d6193754fb9b02b74c44a30f8a68>> * @lightSyntaxTransform * @nogrep */ /* tslint:disable */ /* eslint-disable */ // @ts-nocheck import { ConcreteRequest } from 'relay-runtime'; export type TimeRange = { end?: string | null; start?: string | null; }; export type Granularity = { evaluationWindowMinutes: number; samplingIntervalMinutes: number; }; export type DimensionCardinalityTimeSeriesQuery$variables = { dimensionId: string; granularity: Granularity; timeRange: TimeRange; }; export type DimensionCardinalityTimeSeriesQuery$data = { readonly dimension: { readonly cardinalityTimeSeries?: { readonly data: ReadonlyArray<{ readonly timestamp: string; readonly value: number | null; }>; }; readonly id: string; }; }; export type DimensionCardinalityTimeSeriesQuery = { response: DimensionCardinalityTimeSeriesQuery$data; variables: DimensionCardinalityTimeSeriesQuery$variables; }; const node: ConcreteRequest = (function(){ var v0 = { "defaultValue": null, "kind": "LocalArgument", "name": "dimensionId" }, v1 = { "defaultValue": null, "kind": "LocalArgument", "name": "granularity" }, v2 = { "defaultValue": null, "kind": "LocalArgument", "name": "timeRange" }, v3 = [ { "kind": "Variable", "name": "id", "variableName": "dimensionId" } ], v4 = { "alias": null, "args": null, "kind": "ScalarField", "name": "id", "storageKey": null }, v5 = { "kind": "InlineFragment", "selections": [ { "alias": "cardinalityTimeSeries", "args": [ { "kind": "Variable", "name": "granularity", "variableName": "granularity" }, { "kind": "Literal", "name": "metric", "value": "cardinality" }, { "kind": "Variable", "name": "timeRange", "variableName": "timeRange" } ], "concreteType": "DataQualityTimeSeries", "kind": "LinkedField", "name": "dataQualityTimeSeries", "plural": false, "selections": [ { "alias": null, "args": null, "concreteType": "TimeSeriesDataPoint", "kind": "LinkedField", "name": "data", "plural": true, "selections": [ { "alias": null, "args": null, "kind": "ScalarField", "name": "timestamp", "storageKey": null }, { "alias": null, "args": null, "kind": "ScalarField", "name": "value", "storageKey": null } ], "storageKey": null } ], "storageKey": null } ], "type": "Dimension", "abstractKey": null }; return { "fragment": { "argumentDefinitions": [ (v0/*: any*/), (v1/*: any*/), (v2/*: any*/) ], "kind": "Fragment", "metadata": null, "name": "DimensionCardinalityTimeSeriesQuery", "selections": [ { "alias": "dimension", "args": (v3/*: any*/), "concreteType": null, "kind": "LinkedField", "name": "node", "plural": false, "selections": [ (v4/*: any*/), (v5/*: any*/) ], "storageKey": null } ], "type": "Query", "abstractKey": null }, "kind": "Request", "operation": { "argumentDefinitions": [ (v0/*: any*/), (v2/*: any*/), (v1/*: any*/) ], "kind": "Operation", "name": "DimensionCardinalityTimeSeriesQuery", "selections": [ { "alias": "dimension", "args": (v3/*: any*/), "concreteType": null, "kind": "LinkedField", "name": "node", "plural": false, "selections": [ { "alias": null, "args": null, "kind": "ScalarField", "name": "__typename", "storageKey": null }, (v4/*: any*/), (v5/*: any*/) ], "storageKey": null } ] }, "params": { "cacheID": "3c329f10094fdfe6dfbc0c7742bcffc4", "id": null, "metadata": {}, "name": "DimensionCardinalityTimeSeriesQuery", "operationKind": "query", "text": "query DimensionCardinalityTimeSeriesQuery(\n $dimensionId: ID!\n $timeRange: TimeRange!\n $granularity: Granularity!\n) {\n dimension: node(id: $dimensionId) {\n __typename\n id\n ... on Dimension {\n cardinalityTimeSeries: dataQualityTimeSeries(metric: cardinality, timeRange: $timeRange, granularity: $granularity) {\n data {\n timestamp\n value\n }\n }\n }\n }\n}\n" } }; })(); (node as any).hash = "54017cf4e3febc3e99e1d95c98800ef7"; export default node;

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server