Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
DimensionQuantilesStats.tsx1.76 kB
import { graphql, useFragment } from "react-relay"; import { css } from "@emotion/react"; import { Text } from "@phoenix/components"; import { numberFormatter } from "@phoenix/utils/numberFormatUtils"; import { DimensionQuantilesStats_dimension$key } from "./__generated__/DimensionQuantilesStats_dimension.graphql"; export function DimensionQuantilesStats(props: { dimension: DimensionQuantilesStats_dimension$key; }) { const data = useFragment<DimensionQuantilesStats_dimension$key>( graphql` fragment DimensionQuantilesStats_dimension on Dimension @argumentDefinitions(timeRange: { type: "TimeRange!" }) { p99: dataQualityMetric(metric: p99, timeRange: $timeRange) p75: dataQualityMetric(metric: p75, timeRange: $timeRange) p50: dataQualityMetric(metric: p50, timeRange: $timeRange) p25: dataQualityMetric(metric: p25, timeRange: $timeRange) p1: dataQualityMetric(metric: p01, timeRange: $timeRange) } `, props.dimension ); return ( <ul css={css` display: flex; flex-direction: column; gap: var(--ac-global-dimension-static-size-50); `} > {Object.keys(data).map((statName) => { const stat = data[statName as keyof typeof data]; return ( <li key={statName} css={css` display: flex; flex-direction: column; align-items: flex-end; `} > <Text elementType="h3" size="XS" color="text-700"> {statName} </Text> <Text size="S" data-raw={stat}> {numberFormatter(stat as number | null)} </Text> </li> ); })} </ul> ); }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server