Skip to main content
Glama

@arizeai/phoenix-mcp

Official
by Arize-ai
ModelEmbeddingsTable.tsx2.39 kB
import React, { useMemo } from "react"; import { graphql, usePaginationFragment } from "react-relay"; import { ColumnDef } from "@tanstack/react-table"; import { Link } from "@phoenix/components"; import { FloatCell } from "@phoenix/components/table"; import { Table } from "@phoenix/components/table/Table"; import { ModelEmbeddingsTable_embeddingDimensions$key } from "./__generated__/ModelEmbeddingsTable_embeddingDimensions.graphql"; type ModelEmbeddingsTableProps = { model: ModelEmbeddingsTable_embeddingDimensions$key; }; export function ModelEmbeddingsTable(props: ModelEmbeddingsTableProps) { const { data } = usePaginationFragment( graphql` fragment ModelEmbeddingsTable_embeddingDimensions on Query @refetchable(queryName: "ModelEmbeddingsTableEmbeddingDimensionsQuery") @argumentDefinitions( count: { type: "Int", defaultValue: 50 } cursor: { type: "String", defaultValue: null } startTime: { type: "DateTime!" } endTime: { type: "DateTime!" } ) { model { embeddingDimensions(first: $count, after: $cursor) @connection(key: "ModelEmbeddingsTable_embeddingDimensions") { edges { embedding: node { id name euclideanDistance: driftMetric( metric: euclideanDistance timeRange: { start: $startTime, end: $endTime } ) } } } } } `, props.model ); const tableData = useMemo( () => data.model.embeddingDimensions.edges.map(({ embedding }) => { // Normalize the data return { ...embedding, }; }), [data] ); // Declare the columns type TableRow = (typeof tableData)[number]; const columns = React.useMemo(() => { const cols: ColumnDef<TableRow>[] = [ { header: "name", accessorKey: "name", cell: ({ row, renderValue }) => ( <Link to={`embeddings/${row.original.id}`}> {renderValue() as string} </Link> ), }, { header: "euclidean distance", accessorKey: "euclideanDistance", cell: FloatCell, }, ]; return cols; }, []); // Render the UI for your table return <Table columns={columns} data={tableData} />; }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arize-ai/phoenix'

If you have feedback or need assistance with the MCP directory API, please join our Discord server