Unichat MCP Server

MIT License
14
  • Apple

Unichat MCP Server in Python

Also available in TypeScript

<h4 align="center"> <a href="https://github.com/amidabuddha/unichat-mcp-server/blob/main/LICENSE.md"> <img src="https://img.shields.io/github/license/amidabuddha/unichat-mcp-server" alt="Released under the MIT license." /> </a> <a href="https://smithery.ai/server/unichat-mcp-server"> <img src="https://smithery.ai/badge/unichat-mcp-server" alt="Smithery Server Installations" /> </a> </h4>

Send requests to OpenAI, MistralAI, Anthropic, xAI, Google AI or DeepSeek using MCP protocol via tool or predefined prompts. Vendor API key required

Tools

The server implements one tool:

  • unichat: Send a request to unichat
    • Takes "messages" as required string arguments
    • Returns a response

Prompts

  • code_review
    • Review code for best practices, potential issues, and improvements
    • Arguments:
      • code (string, required): The code to review"
  • document_code
    • Generate documentation for code including docstrings and comments
    • Arguments:
      • code (string, required): The code to comment"
  • explain_code
    • Explain how a piece of code works in detail
    • Arguments:
      • code (string, required): The code to explain"
  • code_rework
    • Apply requested changes to the provided code
    • Arguments:
      • changes (string, optional): The changes to apply"
      • code (string, required): The code to rework"

Quickstart

Install

Claude Desktop

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json On Windows: %APPDATA%/Claude/claude_desktop_config.json

Supported Models:

A list of currently supported models to be used as "SELECTED_UNICHAT_MODEL" may be found here. Please make sure to add the relevant vendor API key as "YOUR_UNICHAT_API_KEY"

Example:

"env": { "UNICHAT_MODEL": "gpt-4o-mini", "UNICHAT_API_KEY": "YOUR_OPENAI_API_KEY" }

Development/Unpublished Servers Configuration

"mcpServers": { "unichat-mcp-server": { "command": "uv", "args": [ "--directory", "{{your source code local directory}}/unichat-mcp-server", "run", "unichat-mcp-server" ], "env": { "UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL", "UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY" } } }

Published Servers Configuration

"mcpServers": { "unichat-mcp-server": { "command": "uvx", "args": [ "unichat-mcp-server" ], "env": { "UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL", "UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY" } } }

Installing via Smithery

To install Unichat for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install unichat-mcp-server --client claude

Development

Building and Publishing

To prepare the package for distribution:

  1. Sync dependencies and update lockfile:
uv sync
  1. Build package distributions:
uv build

This will create source and wheel distributions in the dist/ directory.

  1. Publish to PyPI:
uv publish --token {{YOUR_PYPI_API_TOKEN}}

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.

You can launch the MCP Inspector via npm with this command:

npx @modelcontextprotocol/inspector uv --directory {{your source code local directory}}/unichat-mcp-server run unichat-mcp-server

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

-
security - not tested
A
license - permissive license
-
quality - not tested

Send requests to OpenAI, MistralAI, Anthropic, xAI, or Google AI using MCP protocol via tool or predefined prompts. Vendor API key required

  1. Also available in TypeScript
    1. Tools
      1. Prompts
      2. Quickstart
        1. Install
          1. Claude Desktop
          2. Installing via Smithery
          3. Development
            1. Building and Publishing
              1. Debugging