tavily-search-mcp-server
Tavily Search MCP Server
An MCP server implementation that integrates the Tavily Search API, providing optimized search capabilities for LLMs.
<a href="https://glama.ai/mcp/servers/0kmdibf9t1"><img width="380" height="200" src="https://glama.ai/mcp/servers/0kmdibf9t1/badge" alt="tavily-search-mcp-server MCP server" /></a>
Features
- Web Search: Perform web searches optimized for LLMs, with control over search depth, topic, and time range.
- Content Extraction: Extracts the most relevant content from search results, optimizing for quality and size.
- Optional Features: Include images, image descriptions, short LLM-generated answers, and raw HTML content.
- Domain Filtering: Include or exclude specific domains in search results.
Tools
- tavily_search
- Execute web searches using the Tavily Search API.
- Inputs:
query
(string, required): The search query.search_depth
(string, optional): "basic" or "advanced" (default: "basic").topic
(string, optional): "general" or "news" (default: "general").days
(number, optional): Number of days back for news search (default: 3).time_range
(string, optional): Time range filter ("day", "week", "month", "year" or "d", "w", "m", "y").max_results
(number, optional): Maximum number of results (default: 5).include_images
(boolean, optional): Include related images (default: false).include_image_descriptions
(boolean, optional): Include descriptions for images (default: false).include_answer
(boolean, optional): Include a short LLM-generated answer (default: false).include_raw_content
(boolean, optional): Include raw HTML content (default: false).include_domains
(string[], optional): Domains to include.exclude_domains
(string[], optional): Domains to exclude.
Setup Guide 🚀
1. Prerequisites
- Claude Desktop installed on your computer.
- A Tavily API key: a. Sign up for a Tavily API account. b. Choose a plan (Free tier available). c. Generate your API key from the Tavily dashboard.
2. Installation
- Clone this repository somewhere on your computer:Copygit clone https://github.com/apappascs/tavily-search-mcp-server.git
- Install dependencies & build the project:Copycd tavily-search-mcp-serverCopynpm installCopynpm run build
3. Integration with Claude Desktop
- Open your Claude Desktop configuration file:Copy# On Mac: ~/Library/Application\ Support/Claude/claude_desktop_config.json # On Windows: %APPDATA%\Claude\claude_desktop_config.json
- Add one of the following to the
mcpServers
object in your config, depending on whether you want to run the server usingnpm
ordocker
:Option A: Using NPM (stdio transport)Option B: Using NPM (SSE transport)Copy{ "mcpServers": { "tavily-search-server": { "command": "node", "args": [ "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/index.js" ], "env": { "TAVILY_API_KEY": "your_api_key_here" } } } }Option C: Using DockerCopy{ "mcpServers": { "tavily-search-server": { "command": "node", "args": [ "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/sse.js" ], "env": { "TAVILY_API_KEY": "your_api_key_here" }, "port": 3001 } } }Copy{ "mcpServers": { "tavily-search-server": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "TAVILY_API_KEY", "-v", "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server:/app", "tavily-search-mcp-server" ], "env": { "TAVILY_API_KEY": "your_api_key_here" } } } } - Important Steps:
- Replace
/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server
with the actual full path to where you cloned the repository. - Add your Tavily API key in the
env
section. It's always better to have secrets like API keys as environment variables. - Make sure to use forward slashes (
/
) in the path, even on Windows. - If you are using docker make sure you build the image first using
docker build -t tavily-search-mcp-server:latest .
- Replace
- Restart Claude Desktop for the changes to take effect.
Installing via Smithery
To install Tavily Search for Claude Desktop automatically via Smithery:
Environment Setup (for npm)
- Copy
.env.example
to.env
:Copycp .env.example .env - Update the
.env
file with your actual Tavily API key:Note: Never commit your actual API key to version control. TheCopyTAVILY_API_KEY=your_api_key_here.env
file is ignored by git for security reasons.
Running with NPM
Start the server using Node.js:
For sse transport:
Running with Docker
- Build the Docker image (if you haven't already):Copydocker build -t tavily-search-mcp-server:latest .
- Run the Docker container with:For stdio transport:For sse transport:Copydocker run -it --rm -e TAVILY_API_KEY="your_api_key_here" tavily-search-mcp-server:latestYou can also leverage your shell's environment variables directly, which is a more secure practice:Copydocker run -it --rm -p 3001:3001 -e TAVILY_API_KEY="your_api_key_here" -e TRANSPORT="sse" tavily-search-mcp-server:latestNote: The second command demonstrates the recommended approach of usingCopydocker run -it --rm -p 3001:3001 -e TAVILY_API_KEY=$TAVILY_API_KEY -e TRANSPORT="sse" tavily-search-mcp-server:latest
-e TAVILY_API_KEY=$TAVILY_API_KEY
to pass the value of yourTAVILY_API_KEY
environment variable into the Docker container. This keeps your API key out of your command history, and it is generally preferred over hardcoding secrets in commands. - Using docker composeRun:To stop the server:Copydocker compose up -dCopydocker compose down
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
You must be authenticated.
An MCP server implementation that integrates the Tavily Search API, providing optimized search capabilities for LLMs.