ProtoLinkAI MCP Server

ProtoLinkAI ๐Ÿš€

ProtoLink AI is a standardized tool wrapping framework for implementing and managing diverse tools in a unified way. It is designed to help developers quickly integrate and launch tool-based use cases.

Key Features

  • ๐Ÿ”ง Standardized Wrapping: Provides an abstraction layer for building tools using the MCP protocol.
  • ๐Ÿš€ Flexible Use Cases: Easily add or remove tools to fit your specific requirements.
  • โœจ Out-of-the-Box Tools: Includes pre-built tools for common scenarios:
    • ๐Ÿฆ Twitter Management: Automate tweeting, replying, and managing Twitter interactions.
    • ๐Ÿ’ธ Crypto: Get the latest cryptocurrency prices.
    • ๐Ÿค– ElizaOS Integration: Seamlessly connect and interact with ElizaOS for enhanced automation.
    • ๐Ÿ•‘ Time utilities
    • โ˜๏ธ Weather information (API)
    • ๐Ÿ“š Dictionary lookups
    • ๐Ÿงฎ Calculator for mathematical expressions
    • ๐Ÿ’ต Currency exchange (API)
    • ๐Ÿ“ˆ Stocks Data: Access real-time and historical stock market information.
    • [WIP] ๐Ÿ“ฐ News: Retrieve the latest news headlines.

Tech Stack ๐Ÿ› ๏ธ

  • Python: Core programming language
  • MCP Framework: Communication protocol
  • Docker: Containerization

๐Ÿค” What is MCP?

The Model Context Protocol (MCP) is a cutting-edge standard for context sharing and management across AI models and systems. Think of it as the language AI agents use to interact seamlessly. ๐Ÿง โœจ

Hereโ€™s why MCP matters:

  • ๐Ÿงฉ Standardization: MCP defines how context can be shared across models, enabling interoperability.
  • โšก Scalability: Itโ€™s built to handle large-scale AI systems with high throughput.
  • ๐Ÿ”’ Security: Robust authentication and fine-grained access control.
  • ๐ŸŒ Flexibility: Works across diverse systems and AI architectures.

source

Installation ๐Ÿ“ฆ

Install via PyPI

pip install ProtoLinkai

Usage ๐Ÿ’ป

Run Locally

ProtoLinkai --local-timezone "America/New_York"

Run in Docker

  1. Build the Docker image: docker build -t ProtoLinkai .
  2. Run the container: docker run -i --rm ProtoLinkai

Twitter Integration ๐Ÿฆ

MProtoLinkAI offers robust Twitter integration, allowing you to automate tweeting, replying, and managing Twitter interactions. This section provides detailed instructions on configuring and using the Twitter integration, both via Docker and .env + scripts/run_agent.sh.

Docker Environment Variables for Twitter Integration

When running ProtoLinkAI within Docker, it's essential to configure environment variables for Twitter integration. These variables are divided into two categories:

1. Agent Node Client Credentials

These credentials are used by the Node.js client within the agent for managing Twitter interactions.

ENV TWITTER_USERNAME= ENV TWITTER_PASSWORD= ENV TWITTER_EMAIL=

2. Tweepy (Twitter API v2) Credentials

These credentials are utilized by Tweepy for interacting with Twitter's API v2.

ENV TWITTER_API_KEY= ENV TWITTER_API_SECRET= ENV TWITTER_ACCESS_TOKEN= ENV TWITTER_ACCESS_SECRET= ENV TWITTER_CLIENT_ID= ENV TWITTER_CLIENT_SECRET= ENV TWITTER_BEARER_TOKEN=

Running ProtoLinkAI with Docker

  1. Build the Docker image:
    docker build -t ProtoLinkai .
  2. Run the container:
    docker run -i --rm ProtoLinkai

Setting Up Environment Variables

Create a .env file in the root directory of your project and add the following environment variables:

ANTHROPIC_API_KEY=your_anthropic_api_key ELIZA_PATH=/path/to/eliza TWITTER_USERNAME=your_twitter_username TWITTER_EMAIL=your_twitter_email TWITTER_PASSWORD=your_twitter_password PERSONALITY_CONFIG=/path/to/personality_config.json RUN_AGENT=True # Tweepy (Twitter API v2) Credentials TWITTER_API_KEY=your_twitter_api_key TWITTER_API_SECRET=your_twitter_api_secret TWITTER_ACCESS_TOKEN=your_twitter_access_token TWITTER_ACCESS_SECRET=your_twitter_access_secret TWITTER_CLIENT_ID=your_twitter_client_id TWITTER_CLIENT_SECRET=your_twitter_client_secret TWITTER_BEARER_TOKEN=your_twitter_bearer_token

Running the Agent

  1. Make the script executable:
    chmod +x scripts/run_agent.sh
  2. Run the agent:
    bash scripts/run_agent.sh

Summary

You can configure ProtoLink to run with Twitter integration either using Docker or by setting up environment variables in a .env file and running the scripts/run_agent.sh script.

This flexibility allows you to choose the method that best fits your deployment environment.


ElizaOS Integration ๐Ÿค–

This approach allows you to use Eliza Agents without running the Eliza Framework in the background. It simplifies the setup by embedding Eliza functionality directly within ProtoLink.

Steps:

  1. Configure ProtoLink to Use Eliza MCP Agent: In your Python code, add Eliza MCP Agent to the MultiToolAgent:
    from ProtoLink.core.multi_tool_agent import MultiToolAgent from ProtoLink.tools.eliza_mcp_agent import eliza_mcp_agent multi_tool_agent = MultiToolAgent([ # ... other agents eliza_mcp_agent ])

Advantages:

  • Simplified Setup: No need to manage separate background processes.
  • Easier Monitoring: All functionalities are encapsulated within MCPAgentAI.
  • Highlight Feature: Emphasizes the flexibility of MCPAgentAI in integrating various tools seamlessly.

2. Run Eliza Framework from ProtoLinkai

This method involves running the Eliza Framework as a separate background process alongside ProtoLinkAI.

Steps:

  1. Start Eliza Framework: bash src/ProtoLinkai/tools/eliza/scripts/run.sh
  2. Monitor Eliza Processes: bash src/ProtoLinkai/tools/eliza/scripts/monitor.sh
  3. Configure MCPAgentAI to Use Eliza Agent: In your Python code, add Eliza Agent to the MultiToolAgent:
    from ProtoLink.core.multi_tool_agent import MultiToolAgent from ProtoLink.tools.eliza_agent import eliza_agent multi_tool_agent = MultiToolAgent([ # ... other agents eliza_agent ])

Tutorial: Selecting Specific Tools

You can configure ProtoLink to run only certain tools by modifying the agent configuration in your server or by updating the server.py file to only load desired agents. For example:

from ProtoLinkai.tools.time_agent import TimeAgent from ProtoLinkai.tools.weather_agent import WeatherAgent from ProtoLinkai.core.multi_tool_agent import MultiToolAgent multi_tool_agent = MultiToolAgent([ TimeAgent(), WeatherAgent() ]) This setup will only enable **Time** and **Weather** tools.

Integration Example: Claude Desktop Configuration

You can integrate ProtoLinkAI with Claude Desktop using the following configuration (claude_desktop_config.json), note that local ElizaOS repo is optional arg:

{ "mcpServers": { "mcpagentai": { "command": "docker", "args": ["run", "-i", "-v", "/path/to/local/eliza:/app/eliza", "--rm", "mcpagentai"] } } }

Development ๐Ÿ› ๏ธ

  1. Clone this repository:
    git clone https://github.com/StevenROyola/ProtoLink.git cd mcpagentai
  2. (Optional) Create a virtual environment:
    python3 -m venv .venv source .venv/bin/activate
  3. Install dependencies:
    pip install -e .
  4. Build the package:
    python -m build


License: MIT
Enjoy! ๐ŸŽ‰