ClickUp Operator
by noahvanhart
- .venv
- Lib
- site-packages
- pydantic
- _internal
"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`."""
from __future__ import annotations as _annotations
import dataclasses
import warnings
from copy import copy
from functools import lru_cache
from inspect import Parameter, ismethoddescriptor, signature
from typing import TYPE_CHECKING, Any, Callable, Pattern
from pydantic_core import PydanticUndefined
from typing_extensions import TypeIs
from pydantic.errors import PydanticUserError
from . import _typing_extra
from ._config import ConfigWrapper
from ._docs_extraction import extract_docstrings_from_cls
from ._import_utils import import_cached_base_model, import_cached_field_info
from ._namespace_utils import NsResolver
from ._repr import Representation
from ._utils import can_be_positional
if TYPE_CHECKING:
from annotated_types import BaseMetadata
from ..fields import FieldInfo
from ..main import BaseModel
from ._dataclasses import StandardDataclass
from ._decorators import DecoratorInfos
class PydanticMetadata(Representation):
"""Base class for annotation markers like `Strict`."""
__slots__ = ()
def pydantic_general_metadata(**metadata: Any) -> BaseMetadata:
"""Create a new `_PydanticGeneralMetadata` class with the given metadata.
Args:
**metadata: The metadata to add.
Returns:
The new `_PydanticGeneralMetadata` class.
"""
return _general_metadata_cls()(metadata) # type: ignore
@lru_cache(maxsize=None)
def _general_metadata_cls() -> type[BaseMetadata]:
"""Do it this way to avoid importing `annotated_types` at import time."""
from annotated_types import BaseMetadata
class _PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):
"""Pydantic general metadata like `max_digits`."""
def __init__(self, metadata: Any):
self.__dict__ = metadata
return _PydanticGeneralMetadata # type: ignore
def _update_fields_from_docstrings(cls: type[Any], fields: dict[str, FieldInfo], config_wrapper: ConfigWrapper) -> None:
if config_wrapper.use_attribute_docstrings:
fields_docs = extract_docstrings_from_cls(cls)
for ann_name, field_info in fields.items():
if field_info.description is None and ann_name in fields_docs:
field_info.description = fields_docs[ann_name]
def collect_model_fields( # noqa: C901
cls: type[BaseModel],
bases: tuple[type[Any], ...],
config_wrapper: ConfigWrapper,
ns_resolver: NsResolver | None,
*,
typevars_map: dict[Any, Any] | None = None,
) -> tuple[dict[str, FieldInfo], set[str]]:
"""Collect the fields of a nascent pydantic model.
Also collect the names of any ClassVars present in the type hints.
The returned value is a tuple of two items: the fields dict, and the set of ClassVar names.
Args:
cls: BaseModel or dataclass.
bases: Parents of the class, generally `cls.__bases__`.
config_wrapper: The config wrapper instance.
ns_resolver: Namespace resolver to use when getting model annotations.
typevars_map: A dictionary mapping type variables to their concrete types.
Returns:
A tuple contains fields and class variables.
Raises:
NameError:
- If there is a conflict between a field name and protected namespaces.
- If there is a field other than `root` in `RootModel`.
- If a field shadows an attribute in the parent model.
"""
BaseModel = import_cached_base_model()
FieldInfo_ = import_cached_field_info()
parent_fields_lookup: dict[str, FieldInfo] = {}
for base in reversed(bases):
if model_fields := getattr(base, '__pydantic_fields__', None):
parent_fields_lookup.update(model_fields)
type_hints = _typing_extra.get_model_type_hints(cls, ns_resolver=ns_resolver)
# https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older
# annotations is only used for finding fields in parent classes
annotations = cls.__dict__.get('__annotations__', {})
fields: dict[str, FieldInfo] = {}
class_vars: set[str] = set()
for ann_name, (ann_type, evaluated) in type_hints.items():
if ann_name == 'model_config':
# We never want to treat `model_config` as a field
# Note: we may need to change this logic if/when we introduce a `BareModel` class with no
# protected namespaces (where `model_config` might be allowed as a field name)
continue
for protected_namespace in config_wrapper.protected_namespaces:
ns_violation: bool = False
if isinstance(protected_namespace, Pattern):
ns_violation = protected_namespace.match(ann_name) is not None
elif isinstance(protected_namespace, str):
ns_violation = ann_name.startswith(protected_namespace)
if ns_violation:
for b in bases:
if hasattr(b, ann_name):
if not (issubclass(b, BaseModel) and ann_name in getattr(b, '__pydantic_fields__', {})):
raise NameError(
f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}'
f' of protected namespace "{protected_namespace}".'
)
else:
valid_namespaces = ()
for pn in config_wrapper.protected_namespaces:
if isinstance(pn, Pattern):
if not pn.match(ann_name):
valid_namespaces += (f're.compile({pn.pattern})',)
else:
if not ann_name.startswith(pn):
valid_namespaces += (pn,)
warnings.warn(
f'Field "{ann_name}" in {cls.__name__} has conflict with protected namespace "{protected_namespace}".'
'\n\nYou may be able to resolve this warning by setting'
f" `model_config['protected_namespaces'] = {valid_namespaces}`.",
UserWarning,
)
if _typing_extra.is_classvar_annotation(ann_type):
class_vars.add(ann_name)
continue
if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)):
class_vars.add(ann_name)
continue
if not is_valid_field_name(ann_name):
continue
if cls.__pydantic_root_model__ and ann_name != 'root':
raise NameError(
f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`"
)
# when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get
# "... shadows an attribute" warnings
generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')
for base in bases:
dataclass_fields = {
field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())
}
if hasattr(base, ann_name):
if base is generic_origin:
# Don't warn when "shadowing" of attributes in parametrized generics
continue
if ann_name in dataclass_fields:
# Don't warn when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set
# on the class instance.
continue
if ann_name not in annotations:
# Don't warn when a field exists in a parent class but has not been defined in the current class
continue
warnings.warn(
f'Field name "{ann_name}" in "{cls.__qualname__}" shadows an attribute in parent '
f'"{base.__qualname__}"',
UserWarning,
)
try:
default = getattr(cls, ann_name, PydanticUndefined)
if default is PydanticUndefined:
raise AttributeError
except AttributeError:
if ann_name in annotations:
field_info = FieldInfo_.from_annotation(ann_type)
field_info.evaluated = evaluated
else:
# if field has no default value and is not in __annotations__ this means that it is
# defined in a base class and we can take it from there
if ann_name in parent_fields_lookup:
# The field was present on one of the (possibly multiple) base classes
# copy the field to make sure typevar substitutions don't cause issues with the base classes
field_info = copy(parent_fields_lookup[ann_name])
else:
# The field was not found on any base classes; this seems to be caused by fields not getting
# generated thanks to models not being fully defined while initializing recursive models.
# Nothing stops us from just creating a new FieldInfo for this type hint, so we do this.
field_info = FieldInfo_.from_annotation(ann_type)
field_info.evaluated = evaluated
else:
_warn_on_nested_alias_in_annotation(ann_type, ann_name)
if isinstance(default, FieldInfo_) and ismethoddescriptor(default.default):
# the `getattr` call above triggers a call to `__get__` for descriptors, so we do
# the same if the `= field(default=...)` form is used. Note that we only do this
# for method descriptors for now, we might want to extend this to any descriptor
# in the future (by simply checking for `hasattr(default.default, '__get__')`).
default.default = default.default.__get__(None, cls)
field_info = FieldInfo_.from_annotated_attribute(ann_type, default)
field_info.evaluated = evaluated
# attributes which are fields are removed from the class namespace:
# 1. To match the behaviour of annotation-only fields
# 2. To avoid false positives in the NameError check above
try:
delattr(cls, ann_name)
except AttributeError:
pass # indicates the attribute was on a parent class
# Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__
# to make sure the decorators have already been built for this exact class
decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']
if ann_name in decorators.computed_fields:
raise ValueError("you can't override a field with a computed field")
fields[ann_name] = field_info
if typevars_map:
for field in fields.values():
field.apply_typevars_map(typevars_map)
_update_fields_from_docstrings(cls, fields, config_wrapper)
return fields, class_vars
def _warn_on_nested_alias_in_annotation(ann_type: type[Any], ann_name: str) -> None:
FieldInfo = import_cached_field_info()
args = getattr(ann_type, '__args__', None)
if args:
for anno_arg in args:
if _typing_extra.is_annotated(anno_arg):
for anno_type_arg in _typing_extra.get_args(anno_arg):
if isinstance(anno_type_arg, FieldInfo) and anno_type_arg.alias is not None:
warnings.warn(
f'`alias` specification on field "{ann_name}" must be set on outermost annotation to take effect.',
UserWarning,
)
return
def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool:
FieldInfo = import_cached_field_info()
if not _typing_extra.is_finalvar(type_):
return False
elif val is PydanticUndefined:
return False
elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None):
return False
else:
return True
def collect_dataclass_fields(
cls: type[StandardDataclass],
*,
ns_resolver: NsResolver | None = None,
typevars_map: dict[Any, Any] | None = None,
config_wrapper: ConfigWrapper | None = None,
) -> dict[str, FieldInfo]:
"""Collect the fields of a dataclass.
Args:
cls: dataclass.
ns_resolver: Namespace resolver to use when getting dataclass annotations.
Defaults to an empty instance.
typevars_map: A dictionary mapping type variables to their concrete types.
config_wrapper: The config wrapper instance.
Returns:
The dataclass fields.
"""
FieldInfo_ = import_cached_field_info()
fields: dict[str, FieldInfo] = {}
ns_resolver = ns_resolver or NsResolver()
dataclass_fields = cls.__dataclass_fields__
# The logic here is similar to `_typing_extra.get_cls_type_hints`,
# although we do it manually as stdlib dataclasses already have annotations
# collected in each class:
for base in reversed(cls.__mro__):
if not dataclasses.is_dataclass(base):
continue
with ns_resolver.push(base):
for ann_name, dataclass_field in dataclass_fields.items():
if ann_name not in base.__dict__.get('__annotations__', {}):
# `__dataclass_fields__`contains every field, even the ones from base classes.
# Only collect the ones defined on `base`.
continue
globalns, localns = ns_resolver.types_namespace
ann_type, _ = _typing_extra.try_eval_type(dataclass_field.type, globalns, localns)
if _typing_extra.is_classvar_annotation(ann_type):
continue
if (
not dataclass_field.init
and dataclass_field.default is dataclasses.MISSING
and dataclass_field.default_factory is dataclasses.MISSING
):
# TODO: We should probably do something with this so that validate_assignment behaves properly
# Issue: https://github.com/pydantic/pydantic/issues/5470
continue
if isinstance(dataclass_field.default, FieldInfo_):
if dataclass_field.default.init_var:
if dataclass_field.default.init is False:
raise PydanticUserError(
f'Dataclass field {ann_name} has init=False and init_var=True, but these are mutually exclusive.',
code='clashing-init-and-init-var',
)
# TODO: same note as above re validate_assignment
continue
field_info = FieldInfo_.from_annotated_attribute(ann_type, dataclass_field.default)
else:
field_info = FieldInfo_.from_annotated_attribute(ann_type, dataclass_field)
fields[ann_name] = field_info
if field_info.default is not PydanticUndefined and isinstance(
getattr(cls, ann_name, field_info), FieldInfo_
):
# We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo
setattr(cls, ann_name, field_info.default)
if typevars_map:
for field in fields.values():
# We don't pass any ns, as `field.annotation`
# was already evaluated. TODO: is this method relevant?
# Can't we juste use `_generics.replace_types`?
field.apply_typevars_map(typevars_map)
if config_wrapper is not None:
_update_fields_from_docstrings(cls, fields, config_wrapper)
return fields
def is_valid_field_name(name: str) -> bool:
return not name.startswith('_')
def is_valid_privateattr_name(name: str) -> bool:
return name.startswith('_') and not name.startswith('__')
def takes_validated_data_argument(
default_factory: Callable[[], Any] | Callable[[dict[str, Any]], Any],
) -> TypeIs[Callable[[dict[str, Any]], Any]]:
"""Whether the provided default factory callable has a validated data parameter."""
try:
sig = signature(default_factory)
except (ValueError, TypeError):
# `inspect.signature` might not be able to infer a signature, e.g. with C objects.
# In this case, we assume no data argument is present:
return False
parameters = list(sig.parameters.values())
return len(parameters) == 1 and can_be_positional(parameters[0]) and parameters[0].default is Parameter.empty