mcp-llm

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

MCP LLM

An MCP server that provides access to LLMs using the LlamaIndexTS library.

Features

This MCP server provides the following tools:

  • generate_code: Generate code based on a description
  • generate_code_to_file: Generate code and write it directly to a file at a specific line number
  • generate_documentation: Generate documentation for code
  • ask_question: Ask a question to the LLM

Installation

Update your MCP config to add the mcp-llm server:

{ "mcpServers": { "llm": { "command": "npx", "args": [ "-y", "mcp-llm" ], "env": { "LLM_MODEL_NAME": "deepseek-r1:7b-qwen-distill-q6_k_l", "LLM_MODEL_PROVIDER": "ollama", "LLM_BASE_URL": "http://localhost:11434", "LLM_ALLOW_FILE_WRITE": "true", "LLM_TIMEOUT_S": "240" }, "disabled": false, "autoApprove": [ "generate_code", "generate_documentation", "ask_question", "generate_code_to_file" ], "timeout": 300 }, } }

Available Scripts

  • npm run build - Build the project
  • npm run watch - Watch for changes and rebuild
  • npm start - Start the MCP server
  • npm run example - Run the example script
  • npm run inspector - Run the MCP inspector

Configuration

The MCP server is configurable using environment variables:

Required Environment Variables

  • LLM_MODEL_NAME: The name of the model to use (e.g., qwen2-32b:q6_k, anthropic.claude-3-7-sonnet-20250219-v1:0)
  • LLM_MODEL_PROVIDER: The model provider (e.g., bedrock, ollama, openai, openai-compatible)

Optional Environment Variables

  • LLM_BASE_URL: Base URL for the model provider (e.g., https://ollama.internal, http://my-openai-compatible-server.com:3000/v1)
  • LLM_TEMPERATURE: Temperature parameter for the model (e.g., 0.2)
  • LLM_NUM_CTX: Context window size (e.g., 16384)
  • LLM_TOP_P: Top-p parameter for the model (e.g., 0.85)
  • LLM_TOP_K: Top-k parameter for the model (e.g., 40)
  • LLM_MIN_P: Min-p parameter for the model (e.g., 0.05)
  • LLM_REPETITION_PENALTY: Repetition penalty parameter for the model (e.g., 1.05)
  • LLM_SYSTEM_PROMPT_GENERATE_CODE: System prompt for the generate_code tool
  • LLM_SYSTEM_PROMPT_GENERATE_DOCUMENTATION: System prompt for the generate_documentation tool
  • LLM_SYSTEM_PROMPT_ASK_QUESTION: System prompt for the ask_question tool
  • LLM_TIMEOUT_S: Timeout in seconds for LLM requests (e.g., 240 for 4 minutes)
  • LLM_ALLOW_FILE_WRITE: Set to true to allow the generate_code_to_file tool to write to files (default: false)
  • OPENAI_API_KEY: API key for OpenAI (required when using OpenAI provider)

Manual Install From Source

  1. Clone the repository
  2. Install dependencies:
npm install
  1. Build the project:
npm run build
  1. Update your MCP configuration

Using the Example Script

The repository includes an example script that demonstrates how to use the MCP server programmatically:

node examples/use-mcp-server.js

This script starts the MCP server and sends requests to it using curl commands.

Examples

Generate Code

{ "description": "Create a function that calculates the factorial of a number", "language": "JavaScript" }

Generate Code to File

{ "description": "Create a function that calculates the factorial of a number", "language": "JavaScript", "filePath": "/path/to/factorial.js", "lineNumber": 10, "replaceLines": 0 }

The generate_code_to_file tool supports both relative and absolute file paths. If a relative path is provided, it will be resolved relative to the current working directory of the MCP server.

Generate Documentation

{ "code": "function factorial(n) {\n if (n <= 1) return 1;\n return n * factorial(n - 1);\n}", "language": "JavaScript", "format": "JSDoc" }

Ask Question

{ "question": "What is the difference between var, let, and const in JavaScript?", "context": "I'm a beginner learning JavaScript and confused about variable declarations." }

License