Skip to main content
Glama

Better Qdrant MCP Server

更好的 Qdrant MCP 服务器

用于增强 Qdrant 矢量数据库功能的模型上下文协议 (MCP) 服务器。该服务器提供用于管理 Qdrant 集合、添加文档和执行语义搜索的工具。

特征

  • 列出收藏集:查看所有可用的 Qdrant 收藏集
  • 添加文档:使用各种嵌入服务处理文档并将其添加到 Qdrant 集合
  • 搜索:在矢量数据库中执行语义搜索
  • 删除集合:从 Qdrant 数据库中删除集合

安装

npm install -g better-qdrant-mcp-server

或者直接通过 npx 使用:

npx better-qdrant-mcp-server

配置

服务器使用环境变量进行配置。你可以在项目根目录下的.env文件中设置这些变量:

# Qdrant Configuration QDRANT_URL=http://localhost:6333 QDRANT_API_KEY=your_api_key_if_needed # Embedding Service API Keys OPENAI_API_KEY=your_openai_api_key OPENROUTER_API_KEY=your_openrouter_api_key OLLAMA_ENDPOINT=http://localhost:11434

支持的嵌入服务

  • OpenAI :需要 API 密钥
  • OpenRouter :需要 API 密钥
  • Ollama :本地嵌入模型(默认端点: http://localhost:11434
  • FastEmbed :本地嵌入模型

与 Claude 一起使用

要将此 MCP 服务器与 Claude 一起使用,请将其添加到您的 MCP 设置配置文件中:

{ "mcpServers": { "better-qdrant": { "command": "npx", "args": ["better-qdrant-mcp-server"], "env": { "QDRANT_URL": "http://localhost:6333", "QDRANT_API_KEY": "your_api_key_if_needed", "DEFAULT_EMBEDDING_SERVICE": "ollama", "OPENAI_API_KEY": "your_openai_api_key", "OPENAI_ENDPOINT": "https://api.openai.com/v1", "OPENROUTER_API_KEY": "your_openrouter_api_key", "OPENROUTER_ENDPOINT": "https://api.openrouter.com/v1", "OLLAMA_ENDPOINT": "http://localhost:11434", "OLLAMA_MODEL": "nomic-embed-text" } } } }

示例命令

列表集合
use_mcp_tool server_name: better-qdrant tool_name: list_collections arguments: {}
添加文档
use_mcp_tool server_name: better-qdrant tool_name: add_documents arguments: { "filePath": "/path/to/your/document.pdf", "collection": "my-collection", "embeddingService": "openai", "chunkSize": 1000, "chunkOverlap": 200 }
搜索
use_mcp_tool server_name: better-qdrant tool_name: search arguments: { "query": "your search query", "collection": "my-collection", "embeddingService": "openai", "limit": 5 }
删除收藏集
use_mcp_tool server_name: better-qdrant tool_name: delete_collection arguments: { "collection": "my-collection" }

要求

  • Node.js >= 18.0.0
  • 正在运行的 Qdrant 服务器(本地或远程)
  • 您要使用的嵌入服务的 API 密钥

执照

麻省理工学院

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

模型上下文协议服务器通过提供工具来管理 Qdrant 矢量数据库集合、使用各种嵌入服务处理和嵌入文档以及跨矢量嵌入执行语义搜索,从而实现语义搜索功能。

  1. 特征
    1. 安装
      1. 配置
        1. 支持的嵌入服务
          1. 与 Claude 一起使用
            1. 示例命令
          2. 要求
            1. 执照

              Related MCP Servers

              • -
                security
                A
                license
                -
                quality
                A Model Context Protocol (MCP) server that enables semantic search and retrieval of documentation using a vector database (Qdrant). This server allows you to add documentation from URLs or local files and then search through them using natural language queries.
                Last updated -
                14
                74
                JavaScript
                Apache 2.0
                • Apple
              • -
                security
                A
                license
                -
                quality
                A Model Context Protocol server providing vector database capabilities through Chroma, enabling semantic document search, metadata filtering, and document management with persistent storage.
                Last updated -
                17
                Python
                MIT License
                • Apple
                • Linux
              • -
                security
                F
                license
                -
                quality
                Enables efficient vector database operations for embedding storage and similarity search through a Model Context Protocol interface.
                Last updated -
                3
                Python
              • -
                security
                F
                license
                -
                quality
                A Machine Control Protocol (MCP) server that enables storing and retrieving information from a Qdrant vector database with semantic search capabilities.
                Last updated -
                • Linux
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/wrediam/better-qdrant-mcp-server'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server