Skip to main content
Glama

mcp-server-datadog

Apache 2.0
4,489
103
  • Apple
tool.ts1.1 kB
import { ExtendedTool, ToolHandlers } from '../../utils/types' import { v1 } from '@datadog/datadog-api-client' import { createToolSchema } from '../../utils/tool' import { QueryMetricsZodSchema } from './schema' type MetricsToolName = 'query_metrics' type MetricsTool = ExtendedTool<MetricsToolName> export const METRICS_TOOLS: MetricsTool[] = [ createToolSchema( QueryMetricsZodSchema, 'query_metrics', 'Query timeseries points of metrics from Datadog', ), ] as const type MetricsToolHandlers = ToolHandlers<MetricsToolName> export const createMetricsToolHandlers = ( apiInstance: v1.MetricsApi, ): MetricsToolHandlers => { return { query_metrics: async (request) => { const { from, to, query } = QueryMetricsZodSchema.parse( request.params.arguments, ) const response = await apiInstance.queryMetrics({ from, to, query, }) return { content: [ { type: 'text', text: `Queried metrics data: ${JSON.stringify({ response })}`, }, ], } }, } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winor30/mcp-server-datadog'

If you have feedback or need assistance with the MCP directory API, please join our Discord server