Skip to main content
Glama

MCP Stock Details Server

by whdghk1907

MCP Stock Details Server

Python 3.8+ License: MIT Tests

A comprehensive Model Context Protocol (MCP) server for Korean stock market analysis, providing detailed financial data, analysis tools, and investment insights.

πŸš€ Features

Phase 1 βœ… - Core Infrastructure

  • MCP Server Framework: Model Context Protocol compliant server

  • Data Collection: DART (Data Analysis, Retrieval and Transfer System) integration

  • Caching System: Redis-based caching with memory fallback

  • Error Handling: Comprehensive exception handling and logging

Phase 2 βœ… - Analysis Tools (Weeks 1-5)

Week 1: Company & Financial Analysis

  • get_company_overview: Comprehensive company information

  • get_financial_statements: Income statement, balance sheet, cash flow analysis

Week 2: Financial Ratios & Valuation

  • get_financial_ratios: 50+ financial ratios with industry benchmarks

  • get_valuation_metrics: Multiple valuation approaches (DCF, multiples, etc.)

Week 3: ESG & Technical Analysis

  • get_esg_info: Environmental, Social, Governance analysis

  • get_technical_indicators: Technical analysis indicators (RSI, MACD, etc.)

Week 4: Shareholder & Business Analysis

  • get_shareholder_info: Shareholder structure, governance metrics

  • get_business_segments: Business segment performance analysis

Week 5: Market Analysis

  • get_peer_comparison: Industry peer comparison and benchmarking

  • get_analyst_consensus: Analyst consensus, target prices, investment opinions

Upcoming Features (Phase 3-5)

  • Advanced valuation models (DCF, Monte Carlo simulation)

  • Risk analysis engine (VaR, stress testing)

  • Real-time data pipeline

  • Performance optimization

  • Production deployment

Related MCP server: KIS REST API MCP Server

πŸ› οΈ Installation

Prerequisites

  • Python 3.8 or higher

  • Redis (optional, for enhanced caching)

Setup

# Clone the repository git clone https://github.com/yourusername/mcp-stock-details.git cd mcp-stock-details # Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies pip install -r requirements.txt # Set up environment variables cp .env.example .env # Edit .env with your DART API key and other settings

Environment Variables

# Required DART_API_KEY=your_dart_api_key_here # Optional REDIS_URL=redis://localhost:6379/0 LOG_LEVEL=INFO CACHE_TTL=3600

πŸš€ Quick Start

Running the Server

# Start the MCP server python -m src.server # Or run with specific configuration python -m src.server --config config/development.json

Using with Claude Desktop

Add to your Claude Desktop MCP configuration:

{ "mcpServers": { "stock-details": { "command": "python", "args": ["-m", "src.server"], "cwd": "/path/to/mcp-stock-details", "env": { "DART_API_KEY": "your_api_key" } } } }

Example Usage

# Get company overview result = await server.call_tool("get_company_overview", { "company_code": "005930", # Samsung Electronics "include_financial_summary": True }) # Analyze financial ratios result = await server.call_tool("get_financial_ratios", { "company_code": "005930", "include_industry_comparison": True, "analysis_period": "3Y" }) # Compare with peers result = await server.call_tool("get_peer_comparison", { "company_code": "005930", "include_valuation_comparison": True, "max_peers": 5 })

πŸ“Š Supported Analysis

Financial Analysis

  • Profitability Ratios: ROE, ROA, Operating Margin, Net Margin

  • Liquidity Ratios: Current Ratio, Quick Ratio, Cash Ratio

  • Leverage Ratios: Debt-to-Equity, Interest Coverage, EBITDA Coverage

  • Efficiency Ratios: Asset Turnover, Inventory Turnover, Receivables Turnover

  • Valuation Ratios: P/E, P/B, EV/EBITDA, PEG Ratio

Advanced Analysis

  • DCF Valuation: Multi-stage dividend discount model

  • Peer Comparison: Industry benchmarking and relative valuation

  • ESG Scoring: Environmental, Social, Governance metrics

  • Technical Indicators: RSI, MACD, Bollinger Bands, Moving Averages

  • Risk Analysis: Beta, VaR, Sharpe Ratio, Maximum Drawdown

Market Intelligence

  • Analyst Consensus: Target prices, investment ratings, earnings estimates

  • Shareholder Analysis: Ownership structure, governance metrics

  • Business Segments: Revenue breakdown, segment performance analysis

πŸ§ͺ Testing

# Run all tests python -m pytest # Run with coverage python -m pytest --cov=src --cov-report=html # Run specific test categories python -m pytest tests/unit/ python -m pytest tests/integration/

πŸ“ Project Structure

mcp-stock-details/ β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ server.py # Main MCP server β”‚ β”œβ”€β”€ config.py # Configuration management β”‚ β”œβ”€β”€ exceptions.py # Custom exceptions β”‚ β”œβ”€β”€ models/ # Data models β”‚ β”œβ”€β”€ tools/ # Analysis tools β”‚ β”‚ β”œβ”€β”€ company_tools.py β”‚ β”‚ β”œβ”€β”€ financial_tools.py β”‚ β”‚ β”œβ”€β”€ valuation_tools.py β”‚ β”‚ β”œβ”€β”€ esg_tools.py β”‚ β”‚ β”œβ”€β”€ technical_tools.py β”‚ β”‚ β”œβ”€β”€ risk_tools.py β”‚ β”‚ β”œβ”€β”€ shareholder_tools.py β”‚ β”‚ β”œβ”€β”€ business_segment_tools.py β”‚ β”‚ β”œβ”€β”€ peer_comparison_tools.py β”‚ β”‚ └── analyst_consensus_tools.py β”‚ β”œβ”€β”€ collectors/ # Data collectors β”‚ β”œβ”€β”€ utils/ # Utility functions β”‚ └── cache/ # Caching system β”œβ”€β”€ tests/ β”‚ β”œβ”€β”€ unit/ # Unit tests β”‚ β”œβ”€β”€ integration/ # Integration tests β”‚ └── fixtures/ # Test data β”œβ”€β”€ config/ # Configuration files β”œβ”€β”€ docs/ # Documentation β”œβ”€β”€ requirements.txt β”œβ”€β”€ development-plan.md └── README.md

πŸ“ˆ Development Status

  • Phase 1: Core Infrastructure (Completed)

  • Phase 2: Analysis Tools - Weeks 1-5 (Completed)

  • Phase 3: Advanced Analysis Engine - Weeks 6-8

  • Phase 4: Performance & Quality - Weeks 9-10

  • Phase 5: Deployment & Operations - Weeks 11-12

See Development Plan for detailed roadmap.

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Install development dependencies pip install -r requirements-dev.txt # Install pre-commit hooks pre-commit install # Run tests before committing python -m pytest

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ”— Related Resources

πŸ“ž Support

πŸ™ Acknowledgments

  • DART (κΈˆμœ΅κ°λ…μ›) for providing comprehensive financial data

  • Model Context Protocol team for the excellent framework

  • Korean financial data providers and community


Note: This project is for educational and research purposes. Please ensure compliance with data usage terms and local regulations when using financial data.

-
security - not tested
A
license - permissive license
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/whdghk1907/mcp-stock-details'

If you have feedback or need assistance with the MCP directory API, please join our Discord server