Skip to main content
Glama

Personal Resume Agent

by vsiwach
CLAUDE.md3.33 kB
# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Project Overview Personal Resume Agent is a standalone AI agent that processes resume files and provides intelligent responses about professional background through MCP (Model Context Protocol). It uses RAG (Retrieval-Augmented Generation) with ChromaDB and sentence transformers to make resume information queryable through Claude Desktop. ## Development Commands ### Running the Application - Test the agent directly: `cd src && python personal_resume_agent.py` - Run as MCP server: `cd src && python mcp_resume_server.py` - Example usage demo: `cd examples && python example_usage.py` ### Testing - Run main test suite: `python tests/test_resume_agent.py` - Tests use pytest framework and include temporary file handling ### Dependencies - Install dependencies: `pip install -r requirements.txt` - Core requirements: chromadb, sentence-transformers, PyPDF2, python-docx, transformers, torch ## Architecture ### Core Components - **PersonalResumeAgent** (`src/personal_resume_agent.py`): Main agent logic with query processing, skill matching, and response generation - **ResumeRAGSystem** (`src/resume_rag.py`): ChromaDB-based vector storage and retrieval system with document processing - **MCP Server** (`src/mcp_resume_server.py`): JSON-RPC compliant MCP server for Claude Desktop integration ### Data Processing Flow 1. Resume files (PDF, DOCX, TXT, MD) placed in `data/` directory 2. ResumeRAGSystem extracts content and splits into chunks 3. Content embedded using sentence-transformers model ('all-MiniLM-L6-v2') 4. Chunks stored in ChromaDB at `data/resume_vectordb/` 5. Agent processes queries via semantic search and response generation ### MCP Integration - Exposes `query_resume` tool for Claude Desktop - Implements JSON-RPC 2.0 protocol over stdio transport - Returns structured responses with content blocks ## File Structure ``` personal-resume-agent/ ├── src/ # Core source code │ ├── personal_resume_agent.py # Main agent implementation │ ├── resume_rag.py # RAG system with ChromaDB │ └── mcp_resume_server.py # MCP server for Claude Desktop ├── data/ # Resume files and vector database (excluded from git) ├── tests/ # Test suite with sample data generation ├── examples/ # Usage examples and demonstrations └── docs/ # Additional documentation ``` ## Configuration ### Claude Desktop Setup Add to `claude_desktop_config.json`: ```json { "mcpServers": { "personal-resume": { "command": "python", "args": ["/path/to/personal-resume-agent/src/mcp_resume_server.py"], "cwd": "/path/to/personal-resume-agent" } } } ``` ### Resume File Setup - Place resume files in `data/` directory - Supported formats: PDF, DOCX, TXT, MD - Files with 'resume' or 'cv' in filename are prioritized - Vector database automatically created at `data/resume_vectordb/` ## Privacy and Security - All data processed locally (no external API calls for embeddings) - `data/` directory excluded from version control - Vector database persisted locally only - Resume files never committed to repository

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vsiwach/MCP-Resume-AWS'

If you have feedback or need assistance with the MCP directory API, please join our Discord server