Skip to main content
Glama

Personal Resume Agent

by vsiwach
README.md4.67 kB
# Personal Resume Agent A personalized AI agent that reads your resume and provides intelligent responses about your professional background through a standardized MCP (Model Context Protocol) server interface. Built with RAG (Retrieval-Augmented Generation) capabilities to make your professional information queryable through Claude Desktop. ## Features - **Resume Processing**: Automatically reads and processes resume files (PDF, DOCX, TXT, MD) - **RAG System**: Uses ChromaDB and sentence transformers for intelligent content retrieval - **MCP Server**: Exposes functionality through standardized MCP protocol - **Skill Matching**: Analyzes how well your skills match job requirements - **Natural Language Interface**: Ask questions about your experience, skills, education, etc. ## Quick Start 1. **Install Dependencies** ```bash pip install -r requirements.txt ``` 2. **Add Your Resume** ```bash # Place your resume files in the data/ directory cp your-resume.pdf data/ ``` 3. **Test the Agent** ```bash cd src python personal_resume_agent.py ``` 4. **Run as MCP Server** ```bash cd src python mcp_resume_server.py ``` ## Project Structure ``` personal-resume-agent/ ├── src/ # Source code │ ├── resume_rag.py # RAG system for resume processing │ ├── personal_resume_agent.py # Main agent logic │ └── mcp_resume_server.py # MCP server implementation ├── data/ # Resume files storage ├── tests/ # Test files ├── docs/ # Documentation ├── examples/ # Usage examples └── requirements.txt # Python dependencies ``` ## Usage Examples ### Direct Agent Usage ```python from personal_resume_agent import PersonalResumeAgent agent = PersonalResumeAgent() await agent.initialize() # Ask questions about your resume result = await agent.process_query("What programming languages do I know?") print(result['response']) # Analyze skill match for a job match = await agent.get_skill_match("Python, React, AWS, Docker") print(f"Match: {match['match_percentage']}%") ``` ### MCP Server Tools The MCP server exposes these tools: - `query_resume`: Ask questions about resume content - `get_agent_info`: Get agent capabilities and status - `analyze_skill_match`: Compare skills with job requirements - `get_resume_summary`: Get overview of resume knowledge base ## Configuration ### Claude Desktop Integration Add to your Claude Desktop config (`claude_desktop_config.json`): ```json { "mcpServers": { "personal-resume": { "command": "python", "args": ["/path/to/personal-resume-agent/src/mcp_resume_server.py"], "cwd": "/path/to/personal-resume-agent" } } } ``` ## Supported File Formats - **PDF**: Extracted using PyPDF2 - **DOCX**: Processed with python-docx - **TXT/MD**: Plain text files ## Requirements - Python 3.8+ - ChromaDB for vector storage - Sentence Transformers for embeddings - PyPDF2 for PDF processing - python-docx for Word documents ## Privacy & Security 🔒 **Important Privacy Notes:** - All resume data is processed **locally** on your machine - No personal information is sent to external services - Vector database is stored locally in `data/resume_vectordb/` - The `data/` directory is excluded from version control - Never commit personal resume files to public repositories ## Architecture ``` ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ Resume Files │───▶│ RAG System │───▶│ MCP Server │ │ (PDF/DOCX) │ │ (ChromaDB + │ │ (Claude Tool) │ │ │ │ Transformers) │ │ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ ▼ ┌─────────────────┐ │ Personal Resume │ │ Agent │ │ (Query Engine) │ └─────────────────┘ ``` ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests if applicable 5. Submit a pull request ## License MIT License - See LICENSE file for details.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vsiwach/MCP-Resume-AWS'

If you have feedback or need assistance with the MCP directory API, please join our Discord server