Skip to main content
Glama

Personal Resume Agent

by vsiwach

Personal Resume Agent

A personalized AI agent that reads your resume and provides intelligent responses about your professional background through a standardized MCP (Model Context Protocol) server interface. Built with RAG (Retrieval-Augmented Generation) capabilities to make your professional information queryable through Claude Desktop.

Features

  • Resume Processing: Automatically reads and processes resume files (PDF, DOCX, TXT, MD)

  • RAG System: Uses ChromaDB and sentence transformers for intelligent content retrieval

  • MCP Server: Exposes functionality through standardized MCP protocol

  • Skill Matching: Analyzes how well your skills match job requirements

  • Natural Language Interface: Ask questions about your experience, skills, education, etc.

Quick Start

  1. Install Dependencies

    pip install -r requirements.txt
  2. Add Your Resume

    # Place your resume files in the data/ directory cp your-resume.pdf data/
  3. Test the Agent

    cd src python personal_resume_agent.py
  4. Run as MCP Server

    cd src python mcp_resume_server.py

Project Structure

personal-resume-agent/ ├── src/ # Source code │ ├── resume_rag.py # RAG system for resume processing │ ├── personal_resume_agent.py # Main agent logic │ └── mcp_resume_server.py # MCP server implementation ├── data/ # Resume files storage ├── tests/ # Test files ├── docs/ # Documentation ├── examples/ # Usage examples └── requirements.txt # Python dependencies

Usage Examples

Direct Agent Usage

from personal_resume_agent import PersonalResumeAgent agent = PersonalResumeAgent() await agent.initialize() # Ask questions about your resume result = await agent.process_query("What programming languages do I know?") print(result['response']) # Analyze skill match for a job match = await agent.get_skill_match("Python, React, AWS, Docker") print(f"Match: {match['match_percentage']}%")

MCP Server Tools

The MCP server exposes these tools:

  • query_resume: Ask questions about resume content

  • get_agent_info: Get agent capabilities and status

  • analyze_skill_match: Compare skills with job requirements

  • get_resume_summary: Get overview of resume knowledge base

Configuration

Claude Desktop Integration

Add to your Claude Desktop config (claude_desktop_config.json):

{ "mcpServers": { "personal-resume": { "command": "python", "args": ["/path/to/personal-resume-agent/src/mcp_resume_server.py"], "cwd": "/path/to/personal-resume-agent" } } }

Supported File Formats

  • PDF: Extracted using PyPDF2

  • DOCX: Processed with python-docx

  • TXT/MD: Plain text files

Requirements

  • Python 3.8+

  • ChromaDB for vector storage

  • Sentence Transformers for embeddings

  • PyPDF2 for PDF processing

  • python-docx for Word documents

Privacy & Security

🔒 Important Privacy Notes:

  • All resume data is processed locally on your machine

  • No personal information is sent to external services

  • Vector database is stored locally in data/resume_vectordb/

  • The data/ directory is excluded from version control

  • Never commit personal resume files to public repositories

Architecture

┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ Resume Files │───▶│ RAG System │───▶│ MCP Server │ │ (PDF/DOCX) │ │ (ChromaDB + │ │ (Claude Tool) │ │ │ │ Transformers) │ │ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ ▼ ┌─────────────────┐ │ Personal Resume │ │ Agent │ │ (Query Engine) │ └─────────────────┘

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests if applicable

  5. Submit a pull request

License

MIT License - See LICENSE file for details.

-
security - not tested
A
license - permissive license
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Enables Claude to intelligently query and analyze your resume using RAG technology. Supports skill matching against job requirements and answering questions about your professional background from locally stored resume files.

  1. Features
    1. Quick Start
      1. Project Structure
        1. Usage Examples
          1. Direct Agent Usage
          2. MCP Server Tools
        2. Configuration
          1. Claude Desktop Integration
        3. Supported File Formats
          1. Requirements
            1. Privacy & Security
              1. Architecture
                1. Contributing
                  1. License

                    MCP directory API

                    We provide all the information about MCP servers via our MCP API.

                    curl -X GET 'https://glama.ai/api/mcp/v1/servers/vsiwach/MCP-Resume-AWS'

                    If you have feedback or need assistance with the MCP directory API, please join our Discord server