Skip to main content
Glama

read-logs

Retrieve logged conversation variations from the database to analyze statistical patterns and unusual events in conversation structure.

Instructions

Retrieve logged conversation variations from the database.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
limitYesMaximum number of logs to retrieve
start_dateNoFilter logs after this date (ISO format YYYY-MM-DDTHH:MM:SS)
end_dateNoFilter logs before this date (ISO format YYYY-MM-DDTHH:MM:SS)
full_detailsNoIf true, show all fields; if false, show only context summaries

Implementation Reference

  • Handler for the 'read-logs' tool: parses arguments (limit, full_details), calls db.get_logs(), formats logs into a formatted table, and returns as TextContent. Handles errors.
    elif name == "read-logs": if not arguments: return [types.TextContent(type="text", text="No arguments provided")] limit = min(max(arguments.get("limit", 10), 1), 100) full_details = arguments.get("full_details", False) try: logs = db.get_logs(limit=limit, full_details=full_details) if not logs: return [types.TextContent(type="text", text="No logs found")] # Create compact table header with adjusted widths header = ["ID", "Time", "Prob", "Type", "Context"] separator = "-" * 90 # Increased overall width table = [separator] table.append(" | ".join([ f"{h:<4}" if h == "ID" else f"{h:<12}" if h == "Time" else f"{h:<6}" if h == "Prob" or h == "Type" else f"{h:<45}" # Increased context width for h in header ])) table.append(separator) # Create compact rows with adjusted widths for log in logs: time_str = str(log[1])[5:16] # Extract MM-DD HH:MM context = str(log[8])[:42] + "..." if len(str(log[8])) > 42 else str(log[8]) # Increased context length row = [ str(log[0])[:4], # ID time_str, # Time str(log[5])[:6], # Prob str(log[4])[:6], # Type context # Truncated context ] table.append(" | ".join([ f"{str(cell):<4}" if i == 0 else # ID f"{str(cell):<12}" if i == 1 else # Time f"{str(cell):<6}" if i in [2, 3] else # Prob and Type f"{str(cell):<45}" # Context for i, cell in enumerate(row) ])) return [types.TextContent(type="text", text="\n".join(table))] except sqlite3.Error as e: return [types.TextContent(type="text", text=f"Database error: {str(e)}")] except Exception as e: return [types.TextContent(type="text", text=f"Error: {str(e)}")]
  • Registration of the 'read-logs' tool in the list_tools handler, including description and JSON schema for input validation (limit required, optional filters).
    types.Tool( name="read-logs", description="Retrieve logged conversation variations from the database.", inputSchema={ "type": "object", "properties": { "limit": { "type": "integer", "description": "Maximum number of logs to retrieve", "default": 10, "minimum": 1, "maximum": 100 }, "start_date": { "type": "string", "description": "Filter logs after this date (ISO format YYYY-MM-DDTHH:MM:SS)" }, "end_date": { "type": "string", "description": "Filter logs before this date (ISO format YYYY-MM-DDTHH:MM:SS)" }, "full_details": { "type": "boolean", "description": "If true, show all fields; if false, show only context summaries", "default": False } }, "required": ["limit"] } ),
  • Helper method in LogDatabase class that executes a parameterized SQL query to fetch recent logs from 'chat_monitoring' table, with optional date filters, ordered by timestamp DESC, limited by count. Note: full_details param not used in query (possibly vestigial).
    def get_logs(self, limit: int = 10, start_date: Optional[datetime] = None, end_date: Optional[datetime] = None, full_details: bool = False) -> list: """ Retrieve logs with optional filtering. Args: limit (int): Maximum number of logs to retrieve start_date (datetime, optional): Filter by start date end_date (datetime, optional): Filter by end date full_details (bool): If True, return all fields; if False, return only context summary Returns: list: List of log entries """ query = "SELECT * FROM chat_monitoring" params = [] conditions = [] if start_date: conditions.append("timestamp >= ?") params.append(start_date) if end_date: conditions.append("timestamp <= ?") params.append(end_date) if conditions: query += " WHERE " + " AND ".join(conditions) query += " ORDER BY timestamp DESC LIMIT ?" params.append(limit) try: with sqlite3.connect(self.db_path) as conn: cursor = conn.cursor() cursor.execute(query, params) return cursor.fetchall() except sqlite3.Error as e: print(f"Database error: {str(e)}") return [] except Exception as e: print(f"Error: {str(e)}") return []

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/truaxki/mcp-variance-log'

If you have feedback or need assistance with the MCP directory API, please join our Discord server