# ICE Locator MCP Server - Implementation Plan
## Project Overview
**Goal**: Build a Model Context Protocol (MCP) server that wraps locator.ice.gov for programmatic access to ICE detainee information.
**Timeline**: 3-4 weeks (accelerated delivery)
**Deployment Model**: Self-hosted (users clone and run locally)
**Target**: Polished GitHub repository ready for publication
## System Architecture Diagrams
### Core System Architecture
```mermaid
graph TB
subgraph "Client Layer"
A1[Claude Desktop]
A2[Custom MCP Client]
A3[Other LLM Apps]
A4[AI Agents]
end
subgraph "MCP Protocol Layer"
B[MCP Transport]
B1[JSON-RPC Messages]
B2[Tool Invocations]
B3[Resource Requests]
end
subgraph "ICE Locator MCP Server"
C1[FastMCP Framework]
C2[Tool Registry]
C3[Request Router]
C4[Middleware Stack]
end
subgraph "Business Logic Layer"
D1[Search Orchestrator]
D2[Data Validator]
D3[Result Formatter]
D4[Error Handler]
end
subgraph "Anti-Detection Layer"
E1[Proxy Manager]
E2[Request Obfuscator]
E3[Behavior Simulator]
E4[IP Rotation Engine]
end
subgraph "Web Scraping Layer"
F1[HTTP Client Pool]
F2[Session Manager]
F3[Form Parser]
F4[HTML Parser]
F5[CAPTCHA Handler]
end
subgraph "Infrastructure Layer"
G1[Local Cache Manager]
G2[Rate Limiter]
G3[Logger]
G4[Health Monitor]
end
subgraph "External Services"
H1[locator.ice.gov]
H2[Proxy Providers]
end
A1 & A2 & A3 & A4 --> B
B --> C1
C1 --> C2 & C3 & C4
C3 --> D1
D1 --> E1
E1 --> F1
F1 --> H1
E1 --> H2
C4 --> G1 & G2 & G3 & G4
```
### Anti-Detection Architecture
```mermaid
graph LR
subgraph "IP Management"
A[Proxy Pool Manager]
B[IP Health Monitor]
C[Rotation Scheduler]
D[Failover Handler]
end
subgraph "Request Obfuscation"
E[User-Agent Rotator]
F[Header Randomizer]
G[Timing Controller]
H[Pattern Mixer]
end
subgraph "Behavioral Simulation"
I[Human Delay Patterns]
J[Session Simulation]
K[Error Mimicry]
L[Navigation Patterns]
end
subgraph "Detection Avoidance"
M[Rate Limiter]
N[Request Queuing]
O[Load Balancer]
P[Circuit Breaker]
end
A --> E
E --> I
I --> M
B --> F
F --> J
J --> N
C --> G
G --> K
K --> O
D --> H
H --> L
L --> P
```
### Enhanced User Experience Flow
```mermaid
flowchart TD
A[User Query] --> B{Query Type}
B -->|Natural Language| C[Smart Parser]
B -->|Structured Data| D[Direct Validator]
C --> E[AI Query Interpreter]
E --> F[Auto-Correction Engine]
F --> G[Fuzzy Match Preparation]
D --> H[Parameter Validation]
G --> H
H --> I[Cache Check]
I -->|Hit| J[Enhanced Response]
I -->|Miss| K[Anti-Detection Prep]
K --> L[Proxy Selection]
L --> M[Request Obfuscation]
M --> N[Submit Search]
N --> O{Response Type}
O -->|Success| P[Data Extraction]
O -->|CAPTCHA| Q[Challenge Handler]
O -->|Rate Limited| R[Backoff Strategy]
P --> S[Data Enhancement]
S --> T[Legal Resource Lookup]
T --> U[Multi-Language Support]
U --> V[Response Formatting]
V --> W[Cache Storage]
W --> J
Q --> X{Auto-Solve?}
X -->|Yes| N
X -->|No| Y[Human Intervention]
R --> Z[Retry Queue]
Z --> K
J --> AA[User Guidance]
AA --> BB[Next Steps Recommendation]
BB --> CC[Final Response]
```
## Enhanced Features & User Experience
### Core Search Capabilities
1. **Natural Language Processing**: "Find John Doe from Mexico born around 1990"
2. **Fuzzy Matching**: Handle name variations and misspellings
3. **Smart Auto-Corrections**: Suggest and apply common corrections
4. **Bulk Search Operations**: Search multiple detainees simultaneously
5. **Status Monitoring**: Track changes in custody status
6. **Comprehensive Reporting**: Generate legal-ready reports
### Anti-Detection Measures (MANDATORY)
#### 1. IP Cycling & Rotation
- Rotating proxy pool with health monitoring
- Geographic IP distribution
- Automatic rotation after N requests or time intervals
- Residential proxy preference over datacenter IPs
#### 2. Request Pattern Obfuscation
- Random delays between requests (1-5 seconds)
- Jitter implementation for timing randomness
- Request spacing to avoid burst patterns
- Realistic session duration simulation
#### 3. Browser Fingerprint Randomization
- User-agent rotation with realistic browser signatures
- HTTP header variation within normal ranges
- Accept-Language cycling for language preferences
- Viewport and screen resolution simulation
#### 4. Behavioral Mimicry
- Human-like navigation patterns
- Realistic form interaction delays
- Mouse movement simulation
- Human-like error handling
### Repository Discoverability Features
#### 1. GitHub Optimization
- **SEO-Optimized README**: Clear title, description, keywords
- **Topic Tags**: `mcp-server`, `ice-locator`, `immigration`, `legal-tech`
- **GitHub Actions**: Automated testing and release workflows
- **Documentation Site**: GitHub Pages with comprehensive docs
- **Example Configurations**: Multiple client setup examples
#### 2. MCP Ecosystem Integration
- **MCP Registry Submission**: Submit to official MCP server registry
- **Standard MCP Manifest**: Proper server manifest with capabilities
- **Client Configuration Examples**: Claude Desktop, Cursor, custom clients
- **Tool Documentation**: Comprehensive tool descriptions and examples
#### 3. Community Features
- **Issue Templates**: Bug reports, feature requests, help wanted
- **Contributing Guidelines**: Clear contribution process
- **Code of Conduct**: Welcoming community guidelines
- **Discussions**: Enable GitHub discussions for Q&A
- **Releases**: Semantic versioning with detailed changelogs
## Technology Stack (Simplified)
### Core Dependencies
- **MCP SDK**: Python MCP SDK 1.2.0+
- **HTTP Client**: `httpx` for async web requests
- **Web Scraping**: `beautifulsoup4` and `lxml`
- **Validation**: `pydantic` for data validation
- **Caching**: `diskcache` for local caching (no Redis)
- **Proxies**: `httpx-socks` for proxy support
### Development Dependencies
- **Testing**: `pytest`, `pytest-asyncio`, `pytest-mock`
- **Linting**: `ruff`, `mypy`
- **Documentation**: `mkdocs-material`
## Implementation Timeline (3-4 Weeks)
### Week 1: Foundation & Core Infrastructure
**Days 1-2**: Project Setup & Anti-Detection Framework
**Days 3-4**: Basic MCP Server Implementation
**Days 5-7**: Web Scraping Core & Form Handling
### Week 2: Search Features & Enhancement
**Days 8-9**: Core Search Tools Implementation
**Days 10-11**: Enhanced Search Features (Fuzzy, Bulk, Smart)
**Days 12-14**: Anti-Detection Testing & Optimization
### Week 3: Polish & Documentation
**Days 15-16**: Comprehensive Testing & Bug Fixes
**Days 17-18**: Documentation & Examples
**Days 19-21**: GitHub Repository Polish & Discoverability
### Week 4: Final Testing & Release
**Days 22-23**: End-to-End Testing & Performance Optimization
**Days 24-25**: Final Documentation Review
**Days 26-28**: Release Preparation & Community Setup
## Deliverables
### Core Deliverables
1. **Functional MCP Server** with all search capabilities
2. **Anti-Detection System** with IP rotation and obfuscation
3. **Comprehensive Documentation** including setup and usage guides
4. **Test Suite** with >90% coverage
5. **Example Configurations** for popular MCP clients
### Repository Assets
1. **Professional README** with clear installation and usage
2. **API Documentation** with tool descriptions and examples
3. **Contributing Guidelines** and issue templates
4. **GitHub Actions** for CI/CD and releases
5. **Security Guidelines** and responsible usage policies
### Community Features
1. **MCP Registry Listing** for discoverability
2. **Discussion Forums** for community support
3. **Example Integrations** with Claude Desktop and other clients
4. **Video Tutorials** (if time permits)
5. **Legal Resources** and responsible usage documentation
This implementation plan ensures rapid delivery while maintaining high quality standards and maximum discoverability for AI agents and the broader community.