Skip to main content
Glama

MCP Codebase Insight

by tosin2013
name: MCP Codebase Insight version: 0.1.0 description: A system for analyzing and understanding codebases through semantic analysis, pattern detection, and documentation management. poc_scope: - Vector-based code analysis and similarity search - Pattern detection and knowledge base operations - Dual-transport architecture (SSE and stdio) - Task management and tracking - Memory operations and persistence environment: requirements: python: ">=3.11" docker: ">=20.10.0" ram_gb: 4 cpu_cores: 2 disk_space_gb: 20 dependencies: core: - mcp-firecrawl - httpx-sse - python-frontmatter - qdrant-client>=1.13.3 - fastapi>=0.115.12 - numpy>=2.2.4 transport: - mcp-transport - mcp-stdio - mcp-sse development: - pytest - black - isort - mypy - pip-tools - bump2version configuration: env_vars: required: - QDRANT_HOST - QDRANT_PORT - API_KEY - TRANSPORT_MODE optional: - DEBUG_MODE - LOG_LEVEL files: required: - .env - docker-compose.yml optional: - .env.local setup: steps: 1_environment: - Create and activate Python virtual environment - Install dependencies from requirements.txt - Copy .env.example to .env and configure 2_services: - Start Docker - Run docker-compose up for Qdrant - Wait for services to be ready 3_validation: - Run main PoC validation script - Check individual component validations if needed - Verify transport configurations validation: scripts: main: path: scripts/validate_poc.py description: "Main validation script that orchestrates all component checks" components: vector_store: path: scripts/validate_vector_store.py description: "Validates vector store operations and search functionality" knowledge_base: path: scripts/validate_knowledge_base.py description: "Tests knowledge base operations and entity relations" transport: description: "Transport validation is included in the main PoC script" health_checks: services: qdrant: endpoint: http://localhost:6333/health method: GET api: endpoint: http://localhost:8000/health method: GET headers: Authorization: "Bearer ${API_KEY}" functional_checks: vector_store: - Test vector operations with sample code - Validate embedding dimensions - Verify search functionality knowledge_base: - Create and verify test entities - Test entity relations - Validate query operations transport: sse: - Verify event stream connection - Test bidirectional communication - Check error handling stdio: - Verify process communication - Test command execution - Validate response format troubleshooting: environment: - Check Python and Docker versions - Verify system resources - Validate dependency installation services: - Check Docker container status - View service logs - Verify port availability transport: - Test SSE endpoint connectivity - Verify stdio binary functionality - Check authentication configuration data: - Verify Qdrant collection status - Check knowledge base connectivity - Test data persistence metrics: collection: - System resource usage - Request latency - Transport performance - Operation success rates monitoring: - Component health status - Error rates and types - Resource utilization - Transport switching events documentation: references: - docs/system_architecture/README.md - docs/api/README.md - docs/adrs/006_transport_protocols.md - docs/development/README.md

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-codebase-insight'

If you have feedback or need assistance with the MCP directory API, please join our Discord server