MCP Codebase Insight

by tosin2013
Verified
# Universal Codebase Analysis System Implementation Plan ## System Overview ```mermaid graph TD subgraph Core Infrastructure A[MCP Server] --> B[Vector Store] A --> C[Cache System] A --> D[Metrics Collector] A --> E[Health Monitor] end subgraph LLM Integration F[Meta Prompt System] --> G[Context Builder] G --> H[Prompt Generator] H --> I[Result Processor] I --> J[Knowledge Updater] end subgraph Analysis Engine K[Code Analyzer] --> L[Pattern Detector] K --> M[Architecture Analyzer] K --> N[Security Analyzer] K --> O[Performance Analyzer] end subgraph Documentation System U[FireCrawl Integration] --> V[Doc Manager] V --> W[Reference Cache] V --> X[Git Integration] end subgraph Task Management P[Task Tracker] --> Q[Debug System] P --> R[Test Manager] P --> S[Doc Generator] P --> T[ADR Creator] end subgraph ADR System AA[Impact Analysis] --> AB[Context Gathering] AB --> AC[Decision Analysis] AC --> AD[ADR Generation] AD --> AE[Implementation Tracking] AE --> AF[Evolution Management] end ``` ## Implementation Phases ### Phase 1: Core Infrastructure (Week 1-2) ```mermaid graph LR A[Setup Project] --> B[Vector Store] B --> C[Cache Layer] C --> D[Health Monitoring] D --> E[Metrics System] ``` #### Components: 1. **Vector Store** - Qdrant integration - Embedding system - Pattern storage - Search functionality 2. **Cache System** - LRU implementation - Result caching - Embedding cache - Performance optimization 3. **Health Monitor** - Component status - Performance metrics - Error tracking - System diagnostics 4. **Metrics Collector** - Usage statistics - Performance data - Error rates - Cache effectiveness ### Phase 2: Documentation & Knowledge Management (Week 3-4) ```mermaid graph TD A[FireCrawl Integration] --> B[Doc Crawler] B --> C[Reference Manager] C --> D[Local Cache] D --> E[Git Management] F[External Sources] --> B F --> G[API Docs] F --> H[Framework Docs] F --> I[Best Practices] ``` #### Components: 1. **Documentation Manager** ```python class DocumentationManager: async def crawl_docs(self, sources: List[str]) -> None: """Crawl and store documentation.""" async def update_references(self) -> None: """Update local documentation cache.""" async def manage_gitignore(self) -> None: """Handle version control for docs.""" ``` 2. **Reference System** ```python class ReferenceSystem: async def index_docs(self) -> None: """Index documentation for search.""" async def find_relevant_docs(self, context: str) -> List[Doc]: """Find relevant documentation.""" ``` ### Phase 3: LLM Integration & ADR System (Week 5-6) ```mermaid graph TD A[Meta Prompt System] --> B[Context Builder] B --> C[Prompt Generator] C --> D[Result Processor] D --> E[Knowledge Base] E --> A F[ADR System] --> G[Impact Analysis] G --> H[Context Gathering] H --> I[Decision Analysis] I --> J[Pattern Learning] ``` #### Components: 1. **Meta Prompt System** ```python class MetaPromptSystem: async def generate_prompt(self, task_type: str) -> str: """Generate task-specific prompts.""" async def evolve_prompts(self, feedback: Dict[str, Any]) -> None: """Evolve prompts based on effectiveness.""" ``` 2. **ADR System** ```python class ADRSystem: async def analyze_impact(self, changes: CodeChanges) -> ImpactAnalysis: """Analyze architectural impact of changes.""" async def gather_context(self) -> DecisionContext: """Gather relevant context for decision.""" async def analyze_options(self, options: List[Option]) -> OptionsAnalysis: """Analyze and compare options.""" async def generate_adr(self, context: DecisionContext) -> ADR: """Generate ADR document.""" async def track_implementation(self, adr: ADR) -> Implementation: """Track ADR implementation.""" async def evolve_adr(self, adr: ADR, feedback: Feedback) -> ADR: """Evolve ADR based on implementation feedback.""" async def learn_patterns(self, adr: ADR) -> List[Pattern]: """Extract reusable patterns from ADR.""" ``` ### Phase 4: Debug & Analysis System (Week 7-8) ```mermaid graph TD A[Debug System] --> B[Issue Analysis] B --> C[Pattern Matching] C --> D[Solution Generation] E[Agans Rules] --> F[System Understanding] F --> G[Failure Analysis] G --> H[Solution Verification] ``` #### Components: 1. **Debug System** ```python class DebugSystem: async def analyze_issue(self, issue: Issue) -> Analysis: """Analyze using Agans' 9 Rules.""" async def suggest_solution(self, analysis: Analysis) -> Solution: """Suggest solution approach.""" ``` ## Prompt Templates ### 1. Meta Prompts ```python META_PROMPTS = { "task_analysis": """ Given task: {task_description} Generate optimal analysis prompt considering: 1. Required context 2. Analysis steps 3. Validation criteria 4. Expected outcomes """, "prompt_evolution": """ Original prompt: {original_prompt} Results: {results} Effectiveness: {metrics} Suggest improvements for: 1. Context gathering 2. Analysis depth 3. Result quality 4. Validation accuracy """ } ``` ### 2. ADR Analysis Prompts ```python ADR_PROMPTS = { "impact_analysis": """ Code Changes: {code_changes} Current Architecture: {architecture_context} Historical Decisions: {related_adrs} Analyze: 1. Architectural Impact - Component changes - Interface modifications - Dependency updates 2. Technical Debt Impact - Existing debt affected - Potential new debt - Mitigation strategies 3. Cross-cutting Concerns - Security implications - Performance impact - Scalability considerations """, "decision_analysis": """ Decision Context: {decision_context} Options Considered: {options_analysis} Similar Decisions: {historical_decisions} Analyze each option for: 1. Technical Alignment - Architecture fit - Technology stack - Development practices 2. Business Impact - Development effort - Maintenance cost - Time to market 3. Risk Assessment - Technical risks - Implementation risks - Operational risks """ } ``` ### 3. Debug Analysis Prompts ```python DEBUG_PROMPTS = { "debug_analysis": """ Issue context: {issue_details} System state: {system_state} Following Agans' 9 Rules: 1. System Understanding: - Current architecture - Component relationships - Expected behavior 2. Failure Analysis: - Reproduction steps - Failure conditions - Pattern matching 3. Observable Data: - Error logs - Stack traces - System metrics 4. Component Isolation: - Affected components - Working components - Interface boundaries """ } ``` ## Implementation Strategy 1. **Infrastructure First** - Set up core components - Establish monitoring - Implement caching - Configure vector store 2. **Documentation System** - Integrate FireCrawl - Set up reference management - Configure Git integration - Implement caching 3. **LLM & ADR Integration** - Implement meta prompt system - Build ADR analysis system - Create knowledge management - Set up learning loop 4. **Debug & Analysis** - Implement Agans' rules system - Add pattern detection - Create solution generation - Set up verification system ## Success Criteria 1. **System Performance** - Response time < 2s - Cache hit rate > 80% - Pattern match accuracy > 90% - System uptime > 99.9% 2. **Documentation Quality** - Reference freshness < 24h - Documentation coverage > 95% - ADR completeness > 90% - Test coverage > 85% 3. **Analysis Quality** - Pattern detection accuracy > 90% - Architecture analysis precision > 85% - Security issue detection > 95% - Performance insight accuracy > 85% 4. **ADR Quality** - Context completeness > 95% - Decision clarity > 90% - Implementation tracking > 85% - Evolution management > 90% 5. **Debug Effectiveness** - Issue resolution time < 24h - Solution accuracy > 90% - Pattern learning rate > 85% - Knowledge reuse > 80% ## Next Steps 1. Toggle to Act mode to begin implementation 2. Start with core infrastructure 3. Implement documentation system 4. Add LLM & ADR integration 5. Build debug & analysis components 6. Test and refine each component 7. Gather feedback and improve