Skip to main content
Glama

MCP Codebase Insight

by tosin2013
#!/bin/bash # This script runs tests with a fix for the Python path issue set -e # Activate the virtual environment source .venv/bin/activate # Setup environment for Qdrant export MCP_TEST_MODE=1 export QDRANT_URL="http://localhost:6333" export MCP_COLLECTION_NAME="test_collection_$(date +%s)" export PYTHONPATH="$PYTHONPATH:$(pwd)" # Initialize Qdrant collection for testing echo "Creating Qdrant collection for testing..." python - << EOF import os from qdrant_client import QdrantClient from qdrant_client.http import models # Connect to Qdrant client = QdrantClient(url="http://localhost:6333") collection_name = os.environ.get("MCP_COLLECTION_NAME") # Check if collection exists collections = client.get_collections().collections collection_names = [c.name for c in collections] if collection_name in collection_names: print(f"Collection {collection_name} already exists, recreating it...") client.delete_collection(collection_name=collection_name) # Create collection with vector size 384 (for all-MiniLM-L6-v2) client.create_collection( collection_name=collection_name, vectors_config=models.VectorParams( size=384, # Dimension for all-MiniLM-L6-v2 distance=models.Distance.COSINE, ), ) # Create test directory that might be needed os.makedirs("qdrant_storage", exist_ok=True) print(f"Successfully created collection {collection_name}") EOF # Run all component tests in vector_store echo "Running all vector store tests with component_test_runner.py..." python component_test_runner.py tests/components/test_vector_store.py

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-codebase-insight'

If you have feedback or need assistance with the MCP directory API, please join our Discord server