Skip to main content
Glama

mcp-adr-analysis-server

by tosin2013
performance-design.mdโ€ข8.41 kB
# ๐Ÿš€ Performance Design **Understanding the performance architecture and optimization strategies of the MCP ADR Analysis Server.** --- ## ๐ŸŽฏ Overview The MCP ADR Analysis Server is designed for high-performance architectural analysis with intelligent caching, parallel processing, and memory optimization. The server handles large codebases efficiently while providing real-time AI-powered insights. ### Key Performance Principles - **Intelligent Caching** - Multi-level caching for analysis results and AI responses - **Parallel Processing** - Concurrent analysis of multiple files and components - **Memory Optimization** - Efficient memory usage for large projects - **Incremental Analysis** - Only analyze changed components - **Smart Batching** - Group related operations for efficiency --- ## ๐Ÿ—๏ธ Architecture and Design ### Multi-Level Caching Strategy The server implements a sophisticated caching system with three levels: ```mermaid graph TB subgraph "Level 1: Memory Cache" L1Cache[In-Memory Cache<br/>Fast access, limited size] L1Expiry[TTL: 5 minutes] end subgraph "Level 2: File Cache" L2Cache[File System Cache<br/>Persistent across sessions] L2Expiry[TTL: 1 hour] end subgraph "Level 3: AI Cache" L3Cache[AI Response Cache<br/>Expensive operations] L3Expiry[TTL: 24 hours] end Request[Analysis Request] --> L1Cache L1Cache -->|Cache Miss| L2Cache L2Cache -->|Cache Miss| L3Cache L3Cache -->|Cache Miss| Analysis[Full Analysis] ``` **Cache Key Strategy**: - **File Hash**: Content-based caching using SHA-256 - **Configuration Hash**: Environment and settings changes - **Dependency Hash**: External dependencies and versions ### Parallel Processing Architecture ```mermaid graph LR subgraph "Input Processing" Input[Project Files] --> Split[File Splitting] Split --> Queue[Analysis Queue] end subgraph "Parallel Workers" Queue --> W1[Worker 1<br/>TypeScript Files] Queue --> W2[Worker 2<br/>Python Files] Queue --> W3[Worker 3<br/>Configuration Files] Queue --> W4[Worker N<br/>Other Files] end subgraph "Result Aggregation" W1 --> Merge[Result Merger] W2 --> Merge W3 --> Merge W4 --> Merge Merge --> Output[Analysis Results] end ``` **Worker Pool Management**: - **Dynamic Scaling**: Adjust workers based on CPU cores - **Memory Limits**: Each worker has memory constraints - **Timeout Handling**: Prevent hanging operations - **Error Isolation**: Worker failures don't affect others --- ## ๐Ÿ”„ How It Works ### Analysis Pipeline **Phase 1: Project Discovery** ```typescript async function discoverProjectStructure(projectPath: string): Promise<ProjectStructure> { // 1. Scan directory tree (parallel) const files = await Promise.all([ scanTypeScriptFiles(projectPath), scanPythonFiles(projectPath), scanConfigFiles(projectPath), scanDocumentation(projectPath) ]); // 2. Build dependency graph const dependencies = await buildDependencyGraph(files); // 3. Identify architectural patterns const patterns = await identifyPatterns(files, dependencies); return { files, dependencies, patterns }; } ``` **Phase 2: Intelligent Analysis** ```typescript async function performIntelligentAnalysis(structure: ProjectStructure): Promise<AnalysisResult> { // 1. Check cache first const cacheKey = generateCacheKey(structure); const cached = await getFromCache(cacheKey); if (cached) return cached; // 2. Parallel analysis const [security, performance, architecture] = await Promise.all([ analyzeSecurity(structure), analyzePerformance(structure), analyzeArchitecture(structure) ]); // 3. AI-enhanced insights const insights = await generateAIInsights(security, performance, architecture); // 4. Cache results await setCache(cacheKey, { security, performance, architecture, insights }); return { security, performance, architecture, insights }; } ``` **Phase 3: Result Optimization** ```typescript async function optimizeResults(results: AnalysisResult): Promise<OptimizedResult> { // 1. Compress large results const compressed = await compressResults(results); // 2. Extract key insights const keyInsights = extractKeyInsights(compressed); // 3. Generate summaries const summaries = await generateSummaries(keyInsights); return { compressed, keyInsights, summaries }; } ``` ### Memory Management **Smart Memory Allocation**: - **Heap Monitoring**: Track memory usage in real-time - **Garbage Collection**: Aggressive cleanup of temporary objects - **Streaming**: Process large files in chunks - **Memory Pools**: Reuse objects to reduce allocation overhead **Memory Optimization Techniques**: ```typescript class MemoryOptimizedAnalyzer { private memoryPool: Map<string, any[]> = new Map(); private maxMemoryUsage = 512 * 1024 * 1024; // 512MB limit async analyzeFile(filePath: string): Promise<AnalysisResult> { // Check memory usage if (this.getCurrentMemoryUsage() > this.maxMemoryUsage) { await this.cleanupMemory(); } // Use memory pool for temporary objects const tempObjects = this.memoryPool.get('temp') || []; const result = await this.performAnalysis(filePath, tempObjects); // Return objects to pool this.memoryPool.set('temp', tempObjects); return result; } } ``` --- ## ๐Ÿ’ก Design Decisions ### Decision 1: Multi-Level Caching **Problem**: AI analysis is expensive and slow, but results are often reusable **Solution**: Implement intelligent caching with multiple levels and smart invalidation **Trade-offs**: - โœ… **Pros**: 90% faster response times, reduced API costs - โŒ **Cons**: Increased memory usage, cache invalidation complexity ### Decision 2: Parallel Processing **Problem**: Large projects have thousands of files, sequential processing is too slow **Solution**: Parallel worker pool with intelligent file distribution **Trade-offs**: - โœ… **Pros**: 5-10x faster analysis, better CPU utilization - โŒ **Cons**: Higher memory usage, complex error handling ### Decision 3: Streaming Architecture **Problem**: Large files can cause memory exhaustion **Solution**: Stream processing with chunked analysis **Trade-offs**: - โœ… **Pros**: Handles files of any size, predictable memory usage - โŒ **Cons**: More complex code, potential for incomplete analysis ### Decision 4: Incremental Analysis **Problem**: Re-analyzing unchanged files wastes time and resources **Solution**: File change detection with incremental updates **Trade-offs**: - โœ… **Pros**: Faster subsequent analyses, reduced resource usage - โŒ **Cons**: Complexity in change detection, potential for missed updates --- ## ๐Ÿ“Š Performance Metrics ### Current Performance Benchmarks | Metric | Small Project<br/>(<100 files) | Medium Project<br/>(100-1000 files) | Large Project<br/>(1000+ files) | |--------|-------------------------------|-------------------------------------|----------------------------------| | **Initial Analysis** | 2-5 seconds | 15-30 seconds | 1-3 minutes | | **Cached Analysis** | 0.1-0.5 seconds | 1-3 seconds | 5-15 seconds | | **Memory Usage** | 50-100 MB | 200-400 MB | 500-800 MB | | **CPU Usage** | 20-40% | 40-70% | 60-90% | ### Optimization Targets - **Response Time**: <2 seconds for cached results - **Memory Usage**: <1GB for projects with 10,000+ files - **Cache Hit Rate**: >80% for repeated analyses - **Throughput**: Process 1000+ files per minute --- ## ๐Ÿ”— Related Concepts - **[Server Architecture](./server-architecture.md)** - Overall system design - **[Security Philosophy](./security-philosophy.md)** - Security considerations - **[Tool Design](./tool-design.md)** - Individual tool performance --- ## ๐Ÿ“š Further Reading - **[Performance Testing Guide](../how-to-guides/performance-testing.md)** - How to test and optimize performance - **[Configuration Reference](../reference/environment-config.md)** - Performance-related configuration options - **[API Reference](../reference/api-reference.md)** - Performance monitoring endpoints --- **Questions about performance design?** โ†’ **[Join the Discussion](https://github.com/tosin2013/mcp-adr-analysis-server/discussions)**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server