Skip to main content
Glama

mcp-adr-analysis-server

by tosin2013

MCP ADR Analysis Server

AI-powered architectural analysis for intelligent development workflows. This Model Context Protocol (MCP) server provides immediate, actionable architectural insights instead of prompts. Get real ADR suggestions, technology analysis, and security recommendations through OpenRouter.ai integration.

Key Differentiator: Returns actual analysis results, not prompts to submit elsewhere.

Author: Tosin Akinosho | Repository: GitHub

What is MCP?

The Model Context Protocol enables seamless integration between AI assistants and external tools. This server enhances AI assistants with deep architectural analysis capabilities, enabling intelligent code generation, decision tracking, and development workflow automation.

✨ Core Capabilities

🤖 AI-Powered Analysis - Immediate architectural insights with OpenRouter.ai integration 🏗️ Technology Detection - Identify any tech stack and architectural patterns 📋 ADR Management - Generate, suggest, and maintain Architectural Decision Records 🛡️ Security & Compliance - Detect and mask sensitive content automatically 📊 Workflow Automation - Todo generation, deployment tracking, and rule validation 🧪 TDD Integration - Two-phase Test-Driven Development with ADR linking and validation 🔍 Mock Detection - Sophisticated analysis to distinguish mock from production code 🚀 Deployment Readiness - Zero-tolerance test validation with deployment history tracking and hard blocking

📦 Installation

# Global installation npm install -g mcp-adr-analysis-server # Local installation npm install mcp-adr-analysis-server
# Download and run the RHEL-specific installer curl -sSL https://raw.githubusercontent.com/tosin2013/mcp-adr-analysis-server/main/scripts/install-rhel.sh | bash # Or if you have the repository cloned: git clone https://github.com/tosin2013/mcp-adr-analysis-server.git cd mcp-adr-analysis-server ./scripts/install-rhel.sh

Why RHEL needs special handling:

  • RHEL 9/10 have specific npm PATH and permission issues
  • Global npm installations often fail due to SELinux policies
  • The script handles npm prefix configuration and PATH setup automatically

From Source

git clone https://github.com/tosin2013/mcp-adr-analysis-server.git cd mcp-adr-analysis-server npm install npm run build npm start

🤖 AI Execution Configuration

The MCP server supports AI-powered execution that transforms tools from returning prompts to returning actual results. This solves the fundamental UX issue where AI agents receive prompts instead of actionable data.

Quick Setup

  1. Get OpenRouter API Key: Visit https://openrouter.ai/keys
  2. Set Environment Variables:
    OPENROUTER_API_KEY=your_openrouter_api_key_here EXECUTION_MODE=full AI_MODEL=anthropic/claude-3-sonnet
  3. Restart MCP Server: Tools now return actual results instead of prompts!

Environment Variables

  • OPENROUTER_API_KEY (Required for AI): OpenRouter API key from https://openrouter.ai/keys
  • EXECUTION_MODE (Optional): full (AI execution) or prompt-only (legacy)
  • AI_MODEL (Optional): AI model to use (see supported models below)
Performance Tuning (Optional)
  • AI_TEMPERATURE (Optional): Response consistency (0-1, default: 0.1)
  • AI_MAX_TOKENS (Optional): Response length limit (default: 4000)
  • AI_TIMEOUT (Optional): Request timeout in ms (default: 60000)
  • AI_CACHE_ENABLED (Optional): Enable response caching (default: true)
Project Configuration
  • PROJECT_PATH (Required): Path to the project directory to analyze
  • ADR_DIRECTORY (Optional): Directory containing ADR files (default: docs/adrs)
  • LOG_LEVEL (Optional): Logging level (DEBUG, INFO, WARN, ERROR)

Supported AI Models

ModelProviderUse CaseInput CostOutput Cost
anthropic/claude-3-sonnetAnthropicAnalysis, reasoning$3.00/1K$15.00/1K
anthropic/claude-3-haikuAnthropicQuick tasks$0.25/1K$1.25/1K
openai/gpt-4oOpenAIVersatile analysis$5.00/1K$15.00/1K
openai/gpt-4o-miniOpenAICost-effective$0.15/1K$0.60/1K

⚙️ Client Configuration

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/path/to/your/project", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-sonnet", "EXECUTION_MODE": "full", "ADR_DIRECTORY": "docs/adrs", "LOG_LEVEL": "ERROR" } } } }

Cline (VS Code Extension)

Add to your cline_mcp_settings.json:

{ "mcpServers": { "mcp-adr-analysis-server": { "command": "npx", "args": ["mcp-adr-analysis-server"], "env": { "PROJECT_PATH": "${workspaceFolder}", "ADR_DIRECTORY": "docs/adrs", "LOG_LEVEL": "ERROR" } } } }

Cursor

Create .cursor/mcp.json in your project:

{ "mcpServers": { "adr-analysis": { "command": "npx", "args": ["mcp-adr-analysis-server"], "env": { "PROJECT_PATH": ".", "ADR_DIRECTORY": "docs/adrs", "LOG_LEVEL": "ERROR" } } } }

Windsurf

Add to ~/.codeium/windsurf/mcp_config.json:

{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "args": [], "env": { "PROJECT_PATH": "/path/to/your/project", "ADR_DIRECTORY": "docs/adrs", "LOG_LEVEL": "ERROR" } } } }

🚀 Usage Examples

Basic Project Analysis

// Analyze any project's technology stack and architecture const analysis = await analyzeProjectEcosystem({ projectPath: "/path/to/project", analysisType: "comprehensive" }); // Get intelligent architectural insights const context = await getArchitecturalContext({ projectPath: "/path/to/project", focusAreas: ["security", "scalability", "maintainability"] });

ADR Generation from Requirements

// Convert PRD to structured ADRs const adrs = await generateAdrsFromPrd({ prdPath: "docs/PRD.md", outputDirectory: "docs/adrs", template: "nygard" }); // Generate actionable todos from ADRs with enhanced TDD approach const todos = await generateAdrTodo({ adrDirectory: "docs/adrs", outputPath: "todo.md", phase: "both", // Two-phase TDD: test + production linkAdrs: true, // Link all ADRs for system-wide coverage includeRules: true // Include architectural rules validation });

Enhanced TDD Workflow

// Phase 1: Generate comprehensive test specifications const testPhase = await generateAdrTodo({ adrDirectory: "docs/adrs", outputPath: "todo-tests.md", phase: "test", // Generate mock test specifications linkAdrs: true, // Connect all ADRs for complete test coverage includeRules: true // Validate against architectural rules }); // Phase 2: Generate production implementation tasks const prodPhase = await generateAdrTodo({ adrDirectory: "docs/adrs", outputPath: "todo-implementation.md", phase: "production", // Generate production-ready implementation tasks linkAdrs: true, // Ensure system-wide consistency includeRules: true // Enforce architectural compliance }); // Validate progress and detect mock vs production code const validation = await compareAdrProgress({ todoPath: "todo.md", adrDirectory: "docs/adrs", projectPath: "/path/to/project", deepCodeAnalysis: true, // Distinguish mock from production code functionalValidation: true, // Validate code actually works strictMode: true // Reality-check against LLM overconfidence });

Security and Compliance

// Analyze and mask sensitive content const maskedContent = await maskContent({ content: "API_KEY=secret123", maskingLevel: "strict" }); // Validate architectural rules const validation = await validateRules({ projectPath: "/path/to/project", ruleSet: "enterprise-security" });

Research and Documentation

// Generate context-aware research questions const questions = await generateResearchQuestions({ projectContext: analysis, focusArea: "microservices-migration" }); // Incorporate research findings const updatedAdrs = await incorporateResearch({ researchFindings: findings, adrDirectory: "docs/adrs" });

Advanced Validation & Quality Assurance

// Comprehensive validation with mock detection const qualityCheck = await compareAdrProgress({ todoPath: "todo.md", adrDirectory: "docs/adrs", projectPath: "/path/to/project", // Prevent LLM deception about code completeness deepCodeAnalysis: true, // Detects mock patterns vs real implementation functionalValidation: true, // Tests if code actually works strictMode: true, // Reality-check mechanisms // Advanced analysis options includeTestCoverage: true, // Validate test coverage meets ADR goals validateDependencies: true, // Check cross-ADR dependencies environmentValidation: true // Test in realistic environments }); // Generate architectural rules from ADRs and patterns const rules = await generateRules({ source: "both", // Extract from ADRs and code patterns adrDirectory: "docs/adrs", projectPath: "/path/to/project", outputFormat: "json" // Machine-readable format });

Deployment Readiness & Safety

// Comprehensive deployment validation with zero tolerance const deploymentCheck = await deploymentReadiness({ operation: "full_audit", projectPath: "/path/to/project", targetEnvironment: "production", // Test validation (zero tolerance by default) maxTestFailures: 0, // Hard block on any test failures requireTestCoverage: 80, // Minimum coverage requirement blockOnFailingTests: true, // Prevent deployment with failing tests // Deployment history validation maxRecentFailures: 2, // Max recent deployment failures deploymentSuccessThreshold: 80, // Required success rate rollbackFrequencyThreshold: 20, // Max rollback frequency // Integration options integrateTodoTasks: true, // Auto-create blocking tasks updateHealthScoring: true, // Update project metrics strictMode: true // Enable all safety checks }); // Enhanced git push with deployment readiness const pushResult = await smartGitPush({ message: "Deploy feature X", branch: "main", // Deployment readiness integration checkDeploymentReadiness: true, // Validate before push enforceDeploymentReadiness: true, // Hard block on issues targetEnvironment: "production", // Environment-specific checks strictDeploymentMode: true // Maximum safety }); // Emergency override for critical fixes const override = await deploymentReadiness({ operation: "emergency_override", businessJustification: "Critical security patch - CVE-2024-XXXX", approvalRequired: true });

🎯 Use Cases

👨‍💻 AI Coding Assistants

Enhance AI coding assistants like Cline, Cursor, and Claude Code

  • Test-Driven Development: Two-phase TDD workflow with comprehensive ADR integration
  • Intelligent Code Generation: Generate code that follows architectural patterns and best practices
  • Mock vs Production Detection: Prevent AI assistants from claiming mock code is production-ready
  • Architecture-Aware Refactoring: Refactor code while maintaining architectural integrity
  • Decision Documentation: Automatically document architectural decisions as you code
  • Pattern Recognition: Identify and suggest architectural patterns for new features
  • Quality Validation: Reality-check mechanisms against overconfident AI assessments

💬 Conversational AI Assistants

Enhance chatbots and business agents with architectural intelligence

  • Technical Documentation: Answer questions about system architecture and design decisions
  • Compliance Checking: Verify that proposed changes meet architectural standards
  • Knowledge Synthesis: Combine information from multiple sources for comprehensive answers
  • Decision Support: Provide data-driven recommendations for architectural choices

🤖 Autonomous Development Agents

Enable autonomous agents to understand and work with complex architectures

  • Automated Analysis: Continuously analyze codebases for architectural drift
  • Rule Enforcement: Automatically enforce architectural rules and patterns
  • Documentation Generation: Generate and maintain architectural documentation
  • Deployment Validation: Verify deployment readiness and compliance

🏢 Enterprise Architecture Management

Support enterprise architects and development teams

  • Portfolio Analysis: Analyze multiple projects for consistency and compliance
  • Migration Planning: Plan and track architectural migrations and modernization
  • Risk Assessment: Identify architectural risks and technical debt
  • Standards Enforcement: Ensure compliance with enterprise architectural standards

🛠️ Technology Stack

  • Runtime: Node.js (>=18.0.0)
  • Language: TypeScript with strict configuration
  • Core Framework: @modelcontextprotocol/sdk
  • Validation: Zod schemas for all data structures
  • Testing: Jest with >80% coverage target
  • Linting: ESLint with comprehensive rules
  • Build: TypeScript compiler with incremental builds
  • CI/CD: GitHub Actions with automated testing and publishing

� Project Structure

mcp-adr-analysis-server/ ├── src/ │ ├── index.ts # Main MCP server entry point │ ├── tools/ # MCP tool implementations (23 tools) │ ├── resources/ # MCP resource implementations │ ├── prompts/ # MCP prompt implementations │ ├── types/ # TypeScript interfaces & schemas │ ├── utils/ # Utility functions and helpers │ └── cache/ # Intelligent caching system ├── docs/ │ ├── adrs/ # Architectural Decision Records │ ├── research/ # Research findings and templates │ └── NPM_PUBLISHING.md # NPM publishing guide ├── tests/ # Comprehensive test suite ├── .github/workflows/ # CI/CD automation ├── scripts/ # Build and deployment scripts └── dist/ # Compiled JavaScript output

🧪 Testing

# Run all tests npm test # Run tests with coverage npm run test:coverage # Run tests in watch mode npm run test:watch # Test MCP server functionality npm run test:package

Test Coverage

  • Unit Tests: Individual component testing with >80% coverage
  • Integration Tests: MCP protocol and file system testing
  • Custom Matchers: ADR and schema validation helpers
  • Performance Tests: Caching and optimization validation

🔧 Development

Prerequisites

  • Node.js >= 18.0.0
  • npm or yarn
  • Git

Setup

# Clone the repository git clone https://github.com/tosin2013/mcp-adr-analysis-server.git cd mcp-adr-analysis-server # Install dependencies npm install # Build the project npm run build # Run tests npm test # Start development server npm run dev

Available Scripts

npm run build # Build TypeScript to JavaScript npm run dev # Start development server with hot reload npm test # Run Jest tests with coverage npm run lint # Run ESLint checks npm run lint:fix # Fix ESLint issues automatically npm run clean # Clean build artifacts and cache npm run format # Format code with Prettier npm run typecheck # Run TypeScript type checking

Pre-Commit Hook

The repository includes an automated pre-commit hook that ensures code quality:

# The hook is automatically installed in .git/hooks/pre-commit # It runs automatically on every commit and checks: # ✅ TypeScript compilation # ✅ Related tests (or smoke test fallback) # ✅ Code formatting (Prettier) # ✅ Only processes staged TypeScript/JavaScript files # If checks fail, the commit is blocked with clear error messages: # • TypeScript errors: Fix compilation issues # • Test failures: Address failing tests # • Formatting issues: Run 'npm run format' to auto-fix # For comprehensive pre-release validation: ./scripts/pre-commit-checklist.sh

Code Quality Standards

  • TypeScript: Strict mode with comprehensive type checking
  • ESLint: Enforced code quality and security rules
  • Testing: Jest with custom matchers for ADR validation
  • Coverage: Minimum 80% test coverage required
  • Security: Content masking and secret prevention
  • MCP Compliance: Strict adherence to Model Context Protocol specification

🚀 Getting Started

Quick Start (3 Steps)

  1. Install: npm install -g mcp-adr-analysis-server
  2. Get API Key: Visit https://openrouter.ai/keys
  3. Configure Claude Desktop: Add to your configuration:
{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/path/to/your/project", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-sonnet" } } } }
  1. Restart Claude Desktop and start getting AI-powered architectural insights!

Example Usage

Once configured, you can ask Claude:

"Analyze this React project's architecture and suggest ADRs for any implicit decisions"

"Generate ADRs from the PRD.md file and create a todo.md with implementation tasks"

"Check this codebase for security issues and provide masking recommendations"

The server will now return actual analysis results instead of prompts to submit elsewhere!

🚀 Complete Development Lifecycle

The MCP server now provides a complete development lifecycle assistant with intelligent workflow guidance:

🎯 Step 1: Get Workflow Guidance

get_workflow_guidance

Parameters:

{ "goal": "analyze new project and set up architectural documentation", "projectContext": "new_project", "availableAssets": ["codebase"], "timeframe": "thorough_review" }

Result: Intelligent tool sequence recommendations and workflow guidance.

🏗️ Step 2: Get Development Guidance

get_development_guidance

Parameters:

{ "developmentPhase": "implementation", "adrsToImplement": ["ADR-001: API Design", "ADR-002: Database Schema"], "technologyStack": ["TypeScript", "React", "Node.js"], "teamContext": {"size": "small_team", "experienceLevel": "mixed"} }

Result: Specific coding tasks, implementation patterns, and development roadmap.

Follow the workflow guidance to execute the recommended tool sequence for your specific goals.

🔄 Complete Workflow Examples

New Project Setup
  1. get_workflow_guidance → 2. analyze_project_ecosystem → 3. get_architectural_context → 4. suggest_adrs → 5. get_development_guidance
Existing Project Analysis
  1. get_workflow_guidance → 2. discover_existing_adrs (initializes cache) → 3. get_architectural_context → 4. generate_adr_todo → 5. get_development_guidance
Security Audit
  1. get_workflow_guidance → 2. analyze_content_security → 3. generate_content_masking → 4. validate_content_masking

Configuration Examples

Example 1: AI-Powered Project Analysis
{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/Users/username/my-react-app", "ADR_DIRECTORY": "docs/decisions", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-sonnet", "AI_TEMPERATURE": "0.1", "LOG_LEVEL": "INFO" } } } }
Example 2: Cost-Effective Setup
{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/Users/username/my-project", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-haiku", "AI_MAX_TOKENS": "2000", "AI_TEMPERATURE": "0.05" } } } }
Example 3: Prompt-Only Mode (Legacy)
{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/Users/username/my-project", "EXECUTION_MODE": "prompt-only", "LOG_LEVEL": "INFO" } } } }
Example 4: Multi-Project Setup
{ "mcpServers": { "adr-analysis-frontend": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/Users/username/frontend-app", "ADR_DIRECTORY": "docs/adrs", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "openai/gpt-4o-mini", "LOG_LEVEL": "ERROR" } }, "adr-analysis-backend": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/Users/username/backend-api", "ADR_DIRECTORY": "architecture/decisions", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-sonnet", "LOG_LEVEL": "DEBUG" } } } }
Example 5: Development Environment
{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "${workspaceFolder}", "ADR_DIRECTORY": "docs/adrs", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-haiku", "AI_CACHE_ENABLED": "true", "AI_CACHE_TTL": "1800", "LOG_LEVEL": "DEBUG" } } } }

� Troubleshooting

🔴 RHEL 9/10 Specific Issues

Problem: "Command 'mcp-adr-analysis-server' not found" on RHEL systems

Root Cause: RHEL has specific npm global installation and PATH issues due to SELinux policies and default npm configuration.

Solution: Use the RHEL-specific installer:

curl -sSL https://raw.githubusercontent.com/tosin2013/mcp-adr-analysis-server/main/scripts/install-rhel.sh | bash

Manual Fix for RHEL:

# Fix npm prefix for user directory mkdir -p ~/.npm-global npm config set prefix ~/.npm-global # Add to PATH echo 'export PATH=~/.npm-global/bin:$PATH' >> ~/.bashrc source ~/.bashrc # Reinstall npm install -g mcp-adr-analysis-server

RHEL MCP Configuration: If the command is still not found, use the npx approach:

{ "mcpServers": { "adr-analysis": { "command": "npx", "args": ["mcp-adr-analysis-server"], "env": { "PROJECT_PATH": "/path/to/your/project", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-sonnet", "ADR_DIRECTORY": "docs/adrs", "LOG_LEVEL": "ERROR" } } } }

⚠️ CRITICAL: Tools Return Prompts Instead of Results

Symptom: When calling tools like suggest_adrs, you receive large detailed instructions and prompts instead of actual ADR suggestions.

Root Cause: AI execution is not properly configured. The tool is falling back to prompt-only mode.

Solution: Add these required environment variables to your MCP configuration:

{ "mcpServers": { "adr-analysis": { "command": "mcp-adr-analysis-server", "env": { "PROJECT_PATH": "/path/to/your/project", "OPENROUTER_API_KEY": "your_openrouter_api_key_here", "EXECUTION_MODE": "full", "AI_MODEL": "anthropic/claude-3-sonnet" } } } }

Verification: After adding these variables and restarting, tools should return actual results like:

  • suggest_adrs → Actual ADR suggestions with titles and reasoning
  • analyze_project_ecosystem → Real technology analysis and recommendations
  • generate_content_masking → Actual masked content, not masking instructions

Quick Diagnostic: Use the built-in diagnostic tool:

check_ai_execution_status

This will show exactly what's wrong with your configuration and provide step-by-step fix instructions.

Other AI Execution Issues

Problem: "AI execution not available" errors

# Check execution mode echo $EXECUTION_MODE # Verify API key is set echo $OPENROUTER_API_KEY | head -c 10 # Test AI connectivity curl -H "Authorization: Bearer $OPENROUTER_API_KEY" \ https://openrouter.ai/api/v1/models

Problem: "AI execution not available" errors

  • ✅ Verify OPENROUTER_API_KEY is set correctly
  • ✅ Check EXECUTION_MODE=full in environment
  • ✅ Ensure API key has sufficient credits
  • ✅ Verify network connectivity to OpenRouter

Problem: Slow AI responses

# Reduce token limits for faster responses AI_MAX_TOKENS=2000 AI_TEMPERATURE=0.05 # Enable caching for repeated queries AI_CACHE_ENABLED=true AI_CACHE_TTL=3600

Problem: High API costs

# Use cost-effective models AI_MODEL=anthropic/claude-3-haiku # or AI_MODEL=openai/gpt-4o-mini # Reduce token usage AI_MAX_TOKENS=2000 AI_TEMPERATURE=0.1

Environment Configuration

Check current configuration:

# View AI execution status node -e " const { getAIExecutionStatus } = require('./dist/utils/prompt-execution.js'); console.log(JSON.stringify(getAIExecutionStatus(), null, 2)); "

Reset configuration:

# Clear cache and restart rm -rf .mcp-adr-cache npm run build

Common Issues

IssueSolution
"Module not found" errorsRun npm install && npm run build
TypeScript compilation errorsCheck Node.js version >= 18.0.0
Permission deniedCheck file permissions and project path
API rate limitsReduce AI_MAX_TOKENS or increase AI_TIMEOUT
Cache issuesClear cache with rm -rf .mcp-adr-cache

�🔒 Security Features

Content Protection

  • Automatic Secret Detection: Identifies API keys, passwords, and sensitive data
  • Intelligent Masking: Context-aware content masking with configurable levels
  • Security Validation: Comprehensive security checks and recommendations
  • Compliance Tracking: Ensure adherence to security standards and best practices

Privacy & Data Handling

  • Local Processing: All analysis performed locally, no data sent to external services
  • Configurable Masking: Customize masking rules for your organization's needs
  • Audit Trail: Track all security-related actions and decisions
  • Zero Trust: Assume all content may contain sensitive information

📊 Performance & Scalability

Intelligent Caching

  • Multi-level Caching: File system, memory, and analysis result caching
  • Cache Invalidation: Smart cache invalidation based on file changes
  • Performance Optimization: Optimized for large codebases and complex projects
  • Resource Management: Efficient memory and CPU usage

Scalability Features

  • Incremental Analysis: Only analyze changed files and dependencies
  • Parallel Processing: Multi-threaded analysis for large projects
  • Memory Optimization: Efficient memory usage for large codebases
  • Streaming Results: Stream analysis results for real-time feedback

🤝 Contributing

We welcome contributions! This project follows strict development standards to ensure quality and security.

Development Standards

  • TypeScript: Strict mode with comprehensive type checking
  • Testing: >80% code coverage with Jest
  • Linting: ESLint with security-focused rules
  • Security: All contributions must pass security validation
  • MCP Compliance: Strict adherence to Model Context Protocol specification

Getting Started

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. The pre-commit hook will automatically validate your changes
  5. Run the full test suite: npm test
  6. For comprehensive validation: ./scripts/pre-commit-checklist.sh
  7. Submit a pull request

See CONTRIBUTING.md for detailed guidelines.

Official Documentation

Community Resources

Project Documentation

📄 License

MIT License - see LICENSE file for details.

🙏 Acknowledgments

  • Anthropic for creating the Model Context Protocol
  • The MCP Community for inspiration and best practices
  • Contributors who help make this project better

Built with ❤️ by Tosin Akinosho for AI-driven architectural analysis

Empowering AI assistants with deep architectural intelligence and decision-making capabilities.

Deploy Server
-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Transform your codebase into professional architectural decision records with intelligent AI analysis

  1. What is MCP?
    1. ✨ Core Capabilities
      1. 📦 Installation
        1. NPM Installation (Recommended)
        2. RHEL 9/10 Installation (Recommended for RHEL systems)
        3. From Source
      2. 🤖 AI Execution Configuration
        1. Quick Setup
        2. Environment Variables
        3. Supported AI Models
      3. ⚙️ Client Configuration
        1. Claude Desktop (Recommended Setup)
        2. Cline (VS Code Extension)
        3. Cursor
        4. Windsurf
      4. 🚀 Usage Examples
        1. Basic Project Analysis
        2. ADR Generation from Requirements
        3. Enhanced TDD Workflow
        4. Security and Compliance
        5. Research and Documentation
        6. Advanced Validation & Quality Assurance
        7. Deployment Readiness & Safety
      5. 🎯 Use Cases
        1. 👨‍💻 AI Coding Assistants
        2. 💬 Conversational AI Assistants
        3. 🤖 Autonomous Development Agents
        4. 🏢 Enterprise Architecture Management
      6. 🛠️ Technology Stack
        1. � Project Structure
          1. 🧪 Testing
            1. Test Coverage
          2. 🔧 Development
            1. Prerequisites
            2. Setup
            3. Available Scripts
            4. Pre-Commit Hook
            5. Code Quality Standards
          3. 🚀 Getting Started
            1. Quick Start (3 Steps)
            2. Example Usage
          4. 🚀 Complete Development Lifecycle
            1. 🎯 Step 1: Get Workflow Guidance
            2. 🏗️ Step 2: Get Development Guidance
            3. 📊 Step 3: Execute Recommended Tools
            4. 🔄 Complete Workflow Examples
            5. Configuration Examples
          5. � Troubleshooting
            1. 🔴 RHEL 9/10 Specific Issues
            2. ⚠️ CRITICAL: Tools Return Prompts Instead of Results
            3. Other AI Execution Issues
            4. Environment Configuration
            5. Common Issues
          6. �🔒 Security Features
            1. Content Protection
            2. Privacy & Data Handling
          7. 📊 Performance & Scalability
            1. Intelligent Caching
            2. Scalability Features
          8. 🤝 Contributing
            1. Development Standards
            2. Getting Started
          9. 🔗 Related Resources
            1. Official Documentation
            2. Community Resources
            3. Project Documentation
          10. 📄 License
            1. 🙏 Acknowledgments

              Related MCP Servers

              • A
                security
                A
                license
                A
                quality
                Facilitates comprehensive architectural design and evaluation through specialized agents, rich resources, and powerful tools covering diverse architectural domains, including cloud, AI, and blockchain.
                Last updated -
                3
                1,406
                27
                ISC License
              • -
                security
                F
                license
                -
                quality
                Analyzes codebases to generate dependency graphs and architectural insights across multiple programming languages, helping developers understand code structure and validate against architectural rules.
                Last updated -
                6
                22
                14
              • -
                security
                -
                license
                -
                quality
                Enables AI assistants like Claude to interact with Autodesk Construction Cloud Build platform for construction project management, including issues tracking, RFIs, submittals, and document management through natural language.
                Last updated -
              • -
                security
                A
                license
                -
                quality
                A sophisticated server that enables AI assistants to automatically analyze codebases and generate comprehensive, professional documentation.
                Last updated -
                1
                MIT License
                • Linux
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server