RESEARCH-DRIVEN-INTEGRATION-ANALYSIS.md•30.6 kB
# Research-Driven Architecture Integration Analysis
## Executive Summary
Analysis of all 20 tools in `/src/tools/` to identify which would benefit from **research-driven architecture** integration using `ResearchOrchestrator` + `ai-executor`.
**Key Findings:**
- **3 tools already integrated** ✅
- **5 HIGH priority tools** identified for immediate integration 🔴
- **4 MEDIUM priority tools** for secondary integration 🟡
- **8 tools** do not benefit from research integration ⚪
---
## Tool Analysis Summary
| Tool | Purpose | Research Benefit | Priority | Status |
|------|---------|-----------------|----------|--------|
| **adr-suggestion-tool.ts** | Generate ADR recommendations | ✅ Grounded in actual infra | HIGH | ✅ **INTEGRATED** |
| **adr-validation-tool.ts** | Validate ADRs vs reality | ✅ Validates against actual state | HIGH | ✅ **INTEGRATED** |
| **perform-research-tool.ts** | Research infrastructure | ✅ Native research tool | HIGH | ✅ **INTEGRATED** |
| **deployment-readiness-tool.ts** | Validate deployment readiness | ✅ Check actual environment state | 🔴 HIGH | ❌ TODO |
| **environment-analysis-tool.ts** | Analyze environment context | ✅ Live environment data | 🔴 HIGH | ❌ TODO |
| **deployment-guidance-tool.ts** | Generate deployment guides | ✅ Current infra recommendations | 🔴 HIGH | ❌ TODO |
| **review-existing-adrs-tool.ts** | Review ADR compliance | ✅ Verify actual implementation | 🔴 HIGH | ❌ TODO |
| **deployment-analysis-tool.ts** | Analyze deployment progress | ✅ Verify actual deployment state | 🔴 HIGH | ❌ TODO |
| **troubleshoot-guided-workflow-tool.ts** | Guided troubleshooting | ✅ Diagnose with live environment | 🔴 HIGH | ❌ TODO |
| **interactive-adr-planning-tool.ts** | Interactive ADR planning | ✅ Context-aware multi-phase planning | 🔴 HIGH | ❌ TODO |
| **research-integration-tool.ts** | Research integration patterns | 🟡 Research API patterns | 🟡 MEDIUM | ❌ TODO |
| **research-question-tool.ts** | Generate research questions | 🟡 Context-aware questions | 🟡 MEDIUM | ❌ TODO |
| **adr-bootstrap-validation-tool.ts** | Validate ADR bootstrap | 🟡 Check infra support | 🟡 MEDIUM | ❌ TODO |
| **mcp-planning-tool.ts** | MCP server planning | ⚪ Planning only | LOW | ⚪ Skip |
| **smart-git-push-tool.ts** | Smart git operations | ⚪ Git operations only | LOW | ⚪ Skip |
| **smart-git-push-tool-v2.ts** | Smart git operations v2 | ⚪ Git operations only | LOW | ⚪ Skip |
| **tool-chain-orchestrator.ts** | Orchestrate tool chains | ⚪ Orchestration only | LOW | ⚪ Skip |
| **rule-generation-tool.ts** | Generate validation rules | ⚪ Rule generation only | LOW | ⚪ Skip |
| **content-masking-tool.ts** | Mask sensitive content | ⚪ Security/formatting | LOW | ⚪ Skip |
| **memory-loading-tool.ts** | Load memory data | ⚪ Data loading only | LOW | ⚪ Skip |
---
## HIGH Priority Tools (Immediate Integration)
### 1. deployment-readiness-tool.ts 🔴
**Current Purpose:**
- Validates deployment readiness with zero-tolerance test failures
- Tracks deployment history and patterns
- Blocks unsafe deployments
**Research-Driven Benefits:**
- **Verify actual test execution** (not just CI logs)
- **Check environment prerequisites** (databases, services running)
- **Validate infrastructure matches requirements** (K8s cluster ready, resources available)
- **Detect deployment blockers** (config drift, missing secrets)
**Integration Points:**
```typescript
// Before deployment validation
const research = await orchestrator.answerResearchQuestion(
`Is the ${environment} environment ready for deployment? Check:
- Required services running
- Database migrations status
- Configuration compliance
- Resource availability`
);
if (research.confidence < 0.8) {
return {
ready: false,
blocker: 'Environment verification failed',
evidence: research.answer
};
}
```
**Example Use Case:**
Before deploying to production, check if:
- PostgreSQL is running and migrated
- Redis cache is available
- Kubernetes cluster has sufficient resources
- Environment variables match ADR decisions
---
### 2. environment-analysis-tool.ts 🔴
**Current Purpose:**
- Analyzes environment context and compliance
- Tracks environment snapshots via memory
- Uses Generated Knowledge Prompting (GKP)
**Research-Driven Benefits:**
- **Live environment inspection** (not assumptions)
- **Real-time compliance checking** (actual vs documented)
- **Drift detection** (configuration changes over time)
- **Red Hat ecosystem support** (OpenShift, Podman, Ansible)
**Integration Points:**
```typescript
// Current environment analysis
const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory);
const infraResearch = await orchestrator.answerResearchQuestion(
'What is our complete infrastructure stack? Include container tech, orchestration, databases, caching, message queues, and monitoring.'
);
const complianceResearch = await orchestrator.answerResearchQuestion(
`Based on ADRs, verify compliance for: ${adrDecisions.join(', ')}`
);
```
**Example Use Case:**
Generate environment report showing:
- Kubernetes cluster running v1.28 (ADR states v1.27+) ✅
- PostgreSQL 14 deployed (ADR states 13+) ✅
- Redis missing (ADR requires Redis) ❌
- Podman containers running (Red Hat environment detected) ✅
---
### 3. deployment-guidance-tool.ts 🔴
**Current Purpose:**
- Generates deployment guidance from ADRs
- Creates deployment scripts and configs
- Provides environment-specific guidance
**Research-Driven Benefits:**
- **Infrastructure-aware recommendations** (actual capabilities)
- **Environment-specific steps** (K8s vs OpenShift vs bare metal)
- **Current state migration paths** (from Docker to K8s)
- **Red Hat tooling integration** (oc, podman, ansible commands)
**Integration Points:**
```typescript
// Generate deployment guidance
const currentState = await orchestrator.answerResearchQuestion(
'What deployment tools and platforms are currently available? Check for kubectl, oc, docker, podman, ansible.'
);
const targetState = extractAdrDecisions(adrs);
// AI generates migration path from current to target
const aiExecutor = getAIExecutor();
const guidance = await aiExecutor.executeStructuredPrompt(
`Current: ${currentState.answer}
Target (from ADRs): ${targetState}
Generate step-by-step deployment guidance using available tools.`,
...
);
```
**Example Use Case:**
ADR says "Deploy with Kubernetes", but research finds:
- OpenShift (Red Hat) is running
- `oc` CLI available
- No `kubectl` installed
→ Generate OpenShift-specific deployment guide using `oc` commands instead of `kubectl`
---
### 4. review-existing-adrs-tool.ts 🔴
**Current Purpose:**
- Reviews existing ADRs against code implementation
- Uses tree-sitter for accurate code analysis
- Identifies gaps and suggests updates
**Research-Driven Benefits:**
- **Verify ADR implementation** (code + infrastructure)
- **Detect architectural drift** (decision vs reality)
- **Environment compliance** (ADR says K8s, is K8s running?)
- **Red Hat compliance** (ADR mentions OpenShift, verify deployment)
**Integration Points:**
```typescript
// Review ADR compliance
for (const adr of adrs) {
// Current: Tree-sitter code analysis ✅
const codeCompliance = await analyzeCodeCompliance(adr);
// NEW: Research-driven infrastructure validation
const infraResearch = await orchestrator.answerResearchQuestion(
`ADR "${adr.title}" states: "${adr.decision}".
Verify this is implemented in the current environment.`
);
// AI analyzes gap between decision and reality
const aiExecutor = getAIExecutor();
const gapAnalysis = await aiExecutor.executeStructuredPrompt(
`ADR Decision: ${adr.decision}
Code Analysis: ${codeCompliance}
Infrastructure Reality: ${infraResearch.answer}
Identify gaps and recommend updates.`,
...
);
}
```
**Example Use Case:**
ADR-0012: "Use Redis for session storage"
- ✅ Code analysis: Found Redis client in code
- ❌ Infrastructure: No Redis detected in environment
- 🟡 Recommendation: Deploy Redis or update ADR to reflect current caching strategy
---
### 5. deployment-analysis-tool.ts 🔴
**Current Purpose:**
- Analyzes deployment progress
- Verifies completion with outcome rules
- Tracks CI/CD pipeline status
**Research-Driven Benefits:**
- **Actual deployment verification** (not just CI logs)
- **Service health checks** (pods running, services responding)
- **Post-deployment validation** (migrations ran, caches warmed)
- **Environment state confirmation** (new version deployed)
**Integration Points:**
```typescript
// Verify deployment completion
const deploymentResearch = await orchestrator.answerResearchQuestion(
`Deployment ${deploymentId} completed in CI/CD.
Verify in ${environment} environment:
- New version is running
- All pods/containers healthy
- Database migrations applied
- Services responding to health checks`
);
if (deploymentResearch.confidence < 0.9) {
return {
status: 'verification_failed',
confidence: deploymentResearch.confidence,
issues: deploymentResearch.sources.filter(s => !s.found)
};
}
```
**Example Use Case:**
CI/CD says deployment succeeded, but research finds:
- ✅ New pods started in Kubernetes
- ❌ Old pods still running (rollout incomplete)
- ✅ Database migrations ran
- ❌ Redis cache not cleared (stale data)
→ Mark deployment as "incomplete" and create follow-up tasks
---
### 6. troubleshoot-guided-workflow-tool.ts 🔴
**Current Purpose:**
- Systematic troubleshooting workflow for failures
- Analyzes test failures, deployment failures, runtime errors
- Stores troubleshooting sessions in memory
- Triggers ADR suggestions for recurring failures
**Research-Driven Benefits:**
- **Live diagnosis** - Check actual environment state during troubleshooting
- **Root cause identification** - Verify suspected causes against reality
- **Environment correlation** - Link failures to infrastructure issues
- **Real-time validation** - Test fixes against actual environment
**Critical Integration Points:**
```typescript
// When analyzing a failure
async function analyzeFailure(failure: FailureInfo) {
const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory);
// Step 1: Research current environment state
const envResearch = await orchestrator.answerResearchQuestion(
`Diagnose failure in ${failure.failureDetails.environment || 'production'}:
Error: ${failure.failureDetails.errorMessage}
Check:
- Services health (databases, caches, message queues)
- Recent deployments or config changes
- Resource availability (CPU, memory, disk)
- Network connectivity
- Log patterns for this error`
);
// Step 2: Research failure pattern history
const patternResearch = await orchestrator.answerResearchQuestion(
`Has this error occurred before? Search logs and project history:
"${failure.failureDetails.errorMessage.substring(0, 100)}"`
);
// Step 3: AI-powered root cause analysis
const aiExecutor = getAIExecutor();
if (aiExecutor.isAvailable()) {
const diagnosis = await aiExecutor.executeStructuredPrompt(
`Failure Type: ${failure.failureType}
Error: ${failure.failureDetails.errorMessage}
Stack Trace: ${failure.failureDetails.stackTrace}
Current Environment State:
${envResearch.answer}
Historical Patterns:
${patternResearch.answer}
Provide root cause analysis and troubleshooting steps.`,
null,
{
temperature: 0.2,
systemPrompt: 'You are a DevOps expert. Diagnose based on ACTUAL environment data.'
}
);
return {
rootCause: diagnosis.data.rootCause,
troubleshootingSteps: diagnosis.data.steps,
environmentEvidence: envResearch.sources,
confidence: envResearch.confidence
};
}
}
```
**Example Use Cases:**
**1. Database Connection Failure:**
```
Error: "Connection to PostgreSQL failed: timeout after 30s"
Research discovers:
- ✅ PostgreSQL pod running in Kubernetes
- ❌ PostgreSQL pod restarted 5 minutes ago (OOM kill)
- ✅ Connection string correct
- ❌ Memory limit: 512MB (logs show 498MB used)
Root Cause: PostgreSQL memory limit too low
Fix: Increase memory limit to 1GB in deployment config
```
**2. Deployment Failure:**
```
Error: "Deployment failed: ImagePullBackOff"
Research discovers:
- ❌ Docker image tag "v2.3.4" not found in registry
- ✅ Latest successful deployment used "v2.3.3"
- ✅ Registry credentials valid
- ✅ Network access to registry working
Root Cause: Image tag typo in deployment script
Fix: Correct tag to "v2.3.4" (not "v2.3.4")
```
**3. Performance Issue:**
```
Error: "API response time > 5s (SLA: 500ms)"
Research discovers:
- ✅ Application pods healthy
- ❌ Redis cache empty (restarted 10 min ago, no persistence)
- ✅ Database queries fast (<50ms)
- ❌ Cache hit rate: 0% (normally 95%)
Root Cause: Redis lost data on restart, no persistence configured
Fix: Enable Redis AOF persistence in configuration
```
**4. Test Failure (Intermittent):**
```
Error: "Test 'user_login_test' fails randomly (30% failure rate)"
Research discovers:
- ✅ Test passes in local Docker
- ❌ Test fails in CI (Kubernetes)
- ✅ Database seeds correctly
- ❌ Redis in CI uses shared instance (race condition)
Root Cause: Shared Redis causing test isolation issues
Fix: Use Redis namespace per test or dedicated Redis per CI job
```
**Key Benefits:**
1. **Fast diagnosis** - Research reveals actual state in seconds
2. **No assumptions** - Based on real logs, metrics, configs
3. **Historical context** - Pattern matching against past failures
4. **Environment-aware** - Different troubleshooting for K8s vs Docker vs bare metal
5. **Red Hat support** - Troubleshoot OpenShift, Podman, Ansible issues
**Integration Impact:**
- **Before:** Troubleshooting based on symptoms and assumptions
- **After:** Troubleshooting grounded in actual environment state
- **Result:** Faster root cause identification, fewer wrong paths taken
---
### 7. interactive-adr-planning-tool.ts 🔴
**Current Purpose:**
- Multi-phase interactive ADR creation wizard
- **7-phase workflow**: Problem Definition → Research → Options → Decision → Impact → Implementation → ADR Generation
- Guides users through structured decision-making
- Already integrates research capabilities (but can be enhanced!)
**Research-Driven Benefits:**
- **Phase 1: Problem Definition** - Start with current infrastructure reality
- **Phase 2: Research & Analysis** - Automatic environment discovery
- **Phase 3: Option Exploration** - Evaluate options against actual capabilities
- **Phase 4: Decision Making** - Validate decisions against infrastructure
- **Phase 5: Impact Assessment** - Check real impact on running systems
- **Phase 6: Implementation Planning** - Generate tasks based on actual gaps
- **Phase 7: ADR Generation** - Include evidence from live environment
**Critical Integration Points (Per Phase):**
```typescript
// PHASE 1: Problem Definition with Environment Context
async function startSession(args) {
const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory);
// Auto-discover current state for context
const infraContext = await orchestrator.answerResearchQuestion(
'What is our complete current infrastructure? Include container orchestration, databases, caching, message queues, monitoring, and deployment tools.'
);
return {
sessionId,
phase: 'problem_definition',
environmentContext: {
currentStack: infraContext.answer,
confidence: infraContext.confidence,
sources: infraContext.sources.map(s => s.type),
capabilities: infraContext.sources
.filter(s => s.type === 'environment')
.map(s => s.data)
},
guidance: `# ADR Planning Session
## Current Infrastructure (Auto-Discovered)
${infraContext.answer}
**Data Sources:** ${infraContext.sources.map(s => s.type).join(', ')}
**Confidence:** ${(infraContext.confidence * 100).toFixed(1)}%
Now, what architectural decision needs to be made?`
};
}
// PHASE 2: Research & Analysis (Enhanced)
async function researchPhase(session) {
const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory);
// Research related to problem statement
const problemResearch = await orchestrator.answerResearchQuestion(
`Problem: ${session.context.problemStatement}
Research current approaches, existing solutions, and related patterns in our codebase and infrastructure.`
);
// Find similar ADRs and patterns
const similarDecisions = await orchestrator.answerResearchQuestion(
`Have we made similar decisions before? Search ADRs and project history for: ${session.context.problemStatement}`
);
return {
researchFindings: [
{
source: 'current_implementation',
insight: problemResearch.answer,
relevance: problemResearch.confidence
},
{
source: 'historical_decisions',
insight: similarDecisions.answer,
relevance: similarDecisions.confidence
}
]
};
}
// PHASE 3: Option Exploration (Feasibility Checking)
async function exploreOptions(session) {
const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory);
const aiExecutor = getAIExecutor();
for (const option of session.context.options) {
// Check if option is feasible with current infrastructure
const feasibilityResearch = await orchestrator.answerResearchQuestion(
`Can we implement "${option.name}"? Check:
- Do we have required infrastructure?
- Are necessary tools available?
- What would need to be added?`
);
// AI evaluates option against reality
if (aiExecutor.isAvailable()) {
const evaluation = await aiExecutor.executeStructuredPrompt(
`Option: ${option.name}
Current Infrastructure: ${session.environmentContext.currentStack}
Feasibility Research: ${feasibilityResearch.answer}
Evaluate:
1. Can we do this with current infrastructure?
2. What needs to be added/changed?
3. Estimated effort level (low/medium/high)
4. Risk assessment`,
null,
{ temperature: 0.2 }
);
option.feasibilityScore = evaluation.data.feasibility;
option.requiredChanges = evaluation.data.changes;
option.effort = evaluation.data.effort;
option.risks = evaluation.data.risks;
}
}
return { optionsWithFeasibility: session.context.options };
}
// PHASE 5: Impact Assessment (Real Impact Analysis)
async function assessImpact(session) {
const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory);
// Research systems that will be affected
const impactResearch = await orchestrator.answerResearchQuestion(
`Decision: ${session.context.selectedOption.name}
What systems, services, and configurations will be impacted?
Check running services, deployments, and configurations.`
);
// Research dependencies
const dependencyResearch = await orchestrator.answerResearchQuestion(
`What other systems/services depend on the components affected by: ${session.context.selectedOption.name}?`
);
return {
impacts: {
technical: extractImpacts(impactResearch, 'technical'),
dependencies: extractImpacts(dependencyResearch, 'dependencies'),
infrastructureChanges: impactResearch.sources
.filter(s => s.type === 'environment')
.map(s => s.data)
}
};
}
```
**Example Use Case: "Should we migrate from Docker to Kubernetes?"**
**Phase 1: Problem Definition**
```
Auto-discovered environment:
- ✅ Docker 24.0.0 running
- ✅ 15 containers currently deployed
- ❌ No Kubernetes cluster
- ✅ docker-compose.yml configurations
- 🟡 docker-compose used in deployment scripts
Context: User wants to evaluate K8s migration
```
**Phase 2: Research & Analysis**
```
Research findings:
- Current: All services dockerized
- Deployment: Manual docker-compose up
- Monitoring: Docker stats only
- Scaling: Manual container spawn
- Historical: ADR-0003 chose Docker for simplicity
```
**Phase 3: Option Exploration**
```
Option A: Keep Docker
- Feasibility: ✅ Already implemented
- Effort: Low (no changes)
- Risks: Limited scaling
Option B: Migrate to Kubernetes
- Feasibility: 🟡 Possible but requires cluster
- Effort: High (new infra + migration)
- Risks: Complexity, learning curve
- Required: Install K8s, convert configs
Option C: Hybrid (Docker + K8s)
- Feasibility: 🟡 Complex to manage
- Effort: Very High
- Risks: Operational complexity
```
**Phase 4: Decision Making** (with AI)
```
Selected: Option B (Kubernetes)
Rationale: Growth requires better orchestration
Supporting Evidence:
- CPU usage consistently >80% (needs auto-scaling)
- Manual deployments taking 30+ min
- Service discovery becoming complex
```
**Phase 5: Impact Assessment**
```
Technical Impacts:
- Need to provision K8s cluster (GKE/EKS/OpenShift)
- Convert 15 docker-compose services to K8s manifests
- Update CI/CD for kubectl deployments
- Implement monitoring (Prometheus/Grafana)
Dependencies:
- Database connections (update service names)
- Inter-service communication (use K8s services)
- Configuration management (ConfigMaps/Secrets)
- Persistent storage (PersistentVolumeClaims)
```
**Phase 6: Implementation Planning** (Research-Generated)
```
Tasks generated based on ACTUAL gaps:
1. Provision Kubernetes cluster
2. Convert docker-compose.yml → K8s manifests (15 services)
3. Update deployment scripts (remove docker-compose)
4. Configure kubectl contexts
5. Migrate environment variables → ConfigMaps
6. Test service-to-service communication
7. Update monitoring to Kubernetes metrics
```
**Key Benefits:**
1. **Decisions grounded in reality** - Not hypothetical scenarios
2. **Feasibility pre-checked** - Options validated against actual infrastructure
3. **Accurate impact assessment** - Real dependencies identified
4. **Realistic implementation plans** - Tasks based on actual gaps
5. **Evidence-based ADRs** - Citations to actual infrastructure state
**Integration Impact:**
- **Before:** Planning based on documentation and assumptions
- **After:** Planning grounded in live infrastructure inspection
- **Result:** Better decisions, realistic timelines, fewer surprises
---
## MEDIUM Priority Tools (Secondary Integration)
### 8. research-integration-tool.ts 🟡
**Current Purpose:** Research integration patterns
**Research Benefit:** Can use research to find actual API patterns in codebase
**Integration:** Low priority - already research-focused
---
### 9. research-question-tool.ts 🟡
**Current Purpose:** Generate research questions
**Research Benefit:** Generate context-aware questions based on actual project state
**Integration:** Use research to understand project better before generating questions
---
### 10. adr-bootstrap-validation-tool.ts 🟡
**Current Purpose:** Validate ADR bootstrap setup
**Research Benefit:** Check if infrastructure supports ADR decisions
**Integration:** Verify environment prerequisites match ADR requirements
---
## Tools That Don't Need Research Integration ⚪
These tools perform operations that don't benefit from live infrastructure data:
1. **mcp-planning-tool.ts** - Planning/design tool
2. **smart-git-push-tool.ts** - Git operations
3. **smart-git-push-tool-v2.ts** - Git operations
4. **tool-chain-orchestrator.ts** - Orchestration only
5. **rule-generation-tool.ts** - Rule generation
6. **content-masking-tool.ts** - Security/formatting
7. **memory-loading-tool.ts** - Data loading
---
## Recommended Integration Sequence
### Phase 1: Critical Operations (Week 1)
1. **deployment-readiness-tool.ts** - Critical for safe deployments
2. **troubleshoot-guided-workflow-tool.ts** - Faster incident resolution
3. **interactive-adr-planning-tool.ts** - Evidence-based planning
### Phase 2: Deployment & Validation (Week 2)
4. **deployment-analysis-tool.ts** - Verify deployment success
5. **deployment-guidance-tool.ts** - Provide accurate guidance
6. **review-existing-adrs-tool.ts** - ADR compliance checking
### Phase 3: Environment Tools (Week 3)
7. **environment-analysis-tool.ts** - Environment validation
8. **research-question-tool.ts** - Better question generation
### Phase 4: Bootstrap Tools (Week 4)
9. **adr-bootstrap-validation-tool.ts** - Setup validation
10. **research-integration-tool.ts** - Pattern discovery
---
## Integration Template
For each tool, follow this pattern:
```typescript
import { ResearchOrchestrator } from '../utils/research-orchestrator.js';
import { getAIExecutor } from '../utils/ai-executor.js';
export async function toolFunction(args) {
// Step 1: Research current state
const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory);
const research = await orchestrator.answerResearchQuestion(
'Tool-specific research question about current infrastructure'
);
// Step 2: Use AI for intelligent analysis (if available)
const aiExecutor = getAIExecutor();
let result;
if (aiExecutor.isAvailable()) {
const aiAnalysis = await aiExecutor.executeStructuredPrompt(
`Based on this research: ${research.answer}
Generate tool-specific output...`,
null,
{
temperature: 0.2,
systemPrompt: 'Use ACTUAL research data, not assumptions'
}
);
result = aiAnalysis.data;
} else {
// Fallback to non-AI processing
result = processWithoutAI(research);
}
// Step 3: Format response with research context
return {
content: [{
type: 'text',
text: formatWithResearchContext(result, research)
}]
};
}
```
---
## Benefits of Research-Driven Integration
### 1. Accuracy
- Decisions based on **actual infrastructure** vs assumptions
- No hallucinations about environment state
- Red Hat ecosystem support (OpenShift, Podman, Ansible)
### 2. Confidence Scoring
- Quantified confidence in recommendations
- Web search fallback when local data insufficient
- Transparent source attribution
### 3. Smaller LLM Support
- Facts ground smaller models effectively
- Less reasoning needed when data is provided
- Better performance with Claude Haiku, GPT-3.5-turbo
### 4. Cost Efficiency
- Local/environment queries are free
- Cached AI responses reduce costs
- Only hit web search when truly needed
### 5. Real-Time Currency
- Always reflects current state
- No stale documentation issues
- Detects drift immediately
---
## Testing Strategy
For each integrated tool, add tests covering:
1. **With high-confidence research** (>0.8)
2. **With low-confidence research** (<0.5, needs web search)
3. **With AI executor available**
4. **Without AI executor (fallback mode)**
5. **With Red Hat environment** (OpenShift, Podman, Ansible)
6. **With standard environment** (Kubernetes, Docker)
Example test structure:
```typescript
describe('tool with research integration', () => {
it('should use high-confidence research data', async () => {
// Mock research with 0.9 confidence
// Verify tool uses research directly
});
it('should recommend web search when confidence low', async () => {
// Mock research with 0.3 confidence
// Verify tool suggests web search
});
it('should work without AI executor', async () => {
// Mock AI executor unavailable
// Verify rule-based fallback works
});
});
```
---
## Next Steps
1. ✅ **Completed**: adr-suggestion-tool.ts, adr-validation-tool.ts, perform-research-tool.ts
2. 🔴 **Start Phase 1**: Integrate deployment tools (readiness, analysis, guidance)
3. 🟡 **Plan Phase 2**: Review-existing-adrs-tool.ts, environment-analysis-tool.ts
4. 📝 **Document**: Update README with research-driven capabilities
5. 🧪 **Test**: Comprehensive test coverage for all integrations
---
## Estimated Effort
- **HIGH priority tool integration**: 3-4 hours each (7 tools = 21-28 hours)
- **MEDIUM priority tool integration**: 2-3 hours each (3 tools = 6-9 hours)
- **Testing**: 2 hours per tool (10 tools = 20 hours)
- **Documentation**: 4 hours
- **Total**: ~51-61 hours (1.5-2 weeks full-time)
---
## Success Metrics
- ✅ All 7 HIGH priority tools integrated
- ✅ 90%+ test coverage for integrated tools
- ✅ Documentation updated with research-driven examples
- ✅ Zero regression in existing functionality
- ✅ Confidence scores > 0.7 for typical queries
- ✅ Red Hat environment support working
- ✅ Troubleshooting time reduced by 50%+
- ✅ ADR planning decisions evidence-based
---
## Conclusion
Research-driven architecture integration will **significantly improve** 10 out of 20 tools by grounding them in actual infrastructure reality. The **deployment tools** (readiness, analysis, guidance), **troubleshooting tool**, and **interactive planning tool** are the highest priority as they directly impact deployment safety, incident resolution speed, and decision quality.
**Key Wins:**
1. Deployments verified against actual environment (not assumptions)
2. **Troubleshooting based on live diagnosis** (root cause in minutes, not hours)
3. **ADR planning grounded in real infrastructure** (feasible options, accurate impacts)
4. ADR compliance checked against running infrastructure
5. Red Hat ecosystem (OpenShift, Podman, Ansible) first-class support
6. Smaller LLMs work effectively with factual grounding
7. Cost-efficient (local queries, cached AI, minimal web search)
**Special Impact: Top 3 Tools** 🎯
**1. Troubleshooting Tool**
- Database connection issues → Check if DB is actually running
- Deployment failures → Verify actual pod/container state
- Performance problems → Check real resource usage, cache state
- **Saves hours per incident** by providing instant environment visibility
**2. Interactive Planning Tool**
- Feasibility checking: "Can we do this with our current infrastructure?"
- Impact assessment: "What will this decision actually affect?"
- Implementation planning: "What specific gaps need to be filled?"
- **Prevents bad decisions** by exposing infrastructure reality upfront
**3. Deployment Readiness Tool**
- Pre-deployment validation: "Is the environment actually ready?"
- Infrastructure verification: "Do we have necessary services running?"
- Configuration compliance: "Does deployed config match requirements?"
- **Prevents deployment failures** before they happen