Skip to main content
Glama

mcp-adr-analysis-server

by tosin2013
RESEARCH-DRIVEN-INTEGRATION-ANALYSIS.md30.6 kB
# Research-Driven Architecture Integration Analysis ## Executive Summary Analysis of all 20 tools in `/src/tools/` to identify which would benefit from **research-driven architecture** integration using `ResearchOrchestrator` + `ai-executor`. **Key Findings:** - **3 tools already integrated** ✅ - **5 HIGH priority tools** identified for immediate integration 🔴 - **4 MEDIUM priority tools** for secondary integration 🟡 - **8 tools** do not benefit from research integration ⚪ --- ## Tool Analysis Summary | Tool | Purpose | Research Benefit | Priority | Status | |------|---------|-----------------|----------|--------| | **adr-suggestion-tool.ts** | Generate ADR recommendations | ✅ Grounded in actual infra | HIGH | ✅ **INTEGRATED** | | **adr-validation-tool.ts** | Validate ADRs vs reality | ✅ Validates against actual state | HIGH | ✅ **INTEGRATED** | | **perform-research-tool.ts** | Research infrastructure | ✅ Native research tool | HIGH | ✅ **INTEGRATED** | | **deployment-readiness-tool.ts** | Validate deployment readiness | ✅ Check actual environment state | 🔴 HIGH | ❌ TODO | | **environment-analysis-tool.ts** | Analyze environment context | ✅ Live environment data | 🔴 HIGH | ❌ TODO | | **deployment-guidance-tool.ts** | Generate deployment guides | ✅ Current infra recommendations | 🔴 HIGH | ❌ TODO | | **review-existing-adrs-tool.ts** | Review ADR compliance | ✅ Verify actual implementation | 🔴 HIGH | ❌ TODO | | **deployment-analysis-tool.ts** | Analyze deployment progress | ✅ Verify actual deployment state | 🔴 HIGH | ❌ TODO | | **troubleshoot-guided-workflow-tool.ts** | Guided troubleshooting | ✅ Diagnose with live environment | 🔴 HIGH | ❌ TODO | | **interactive-adr-planning-tool.ts** | Interactive ADR planning | ✅ Context-aware multi-phase planning | 🔴 HIGH | ❌ TODO | | **research-integration-tool.ts** | Research integration patterns | 🟡 Research API patterns | 🟡 MEDIUM | ❌ TODO | | **research-question-tool.ts** | Generate research questions | 🟡 Context-aware questions | 🟡 MEDIUM | ❌ TODO | | **adr-bootstrap-validation-tool.ts** | Validate ADR bootstrap | 🟡 Check infra support | 🟡 MEDIUM | ❌ TODO | | **mcp-planning-tool.ts** | MCP server planning | ⚪ Planning only | LOW | ⚪ Skip | | **smart-git-push-tool.ts** | Smart git operations | ⚪ Git operations only | LOW | ⚪ Skip | | **smart-git-push-tool-v2.ts** | Smart git operations v2 | ⚪ Git operations only | LOW | ⚪ Skip | | **tool-chain-orchestrator.ts** | Orchestrate tool chains | ⚪ Orchestration only | LOW | ⚪ Skip | | **rule-generation-tool.ts** | Generate validation rules | ⚪ Rule generation only | LOW | ⚪ Skip | | **content-masking-tool.ts** | Mask sensitive content | ⚪ Security/formatting | LOW | ⚪ Skip | | **memory-loading-tool.ts** | Load memory data | ⚪ Data loading only | LOW | ⚪ Skip | --- ## HIGH Priority Tools (Immediate Integration) ### 1. deployment-readiness-tool.ts 🔴 **Current Purpose:** - Validates deployment readiness with zero-tolerance test failures - Tracks deployment history and patterns - Blocks unsafe deployments **Research-Driven Benefits:** - **Verify actual test execution** (not just CI logs) - **Check environment prerequisites** (databases, services running) - **Validate infrastructure matches requirements** (K8s cluster ready, resources available) - **Detect deployment blockers** (config drift, missing secrets) **Integration Points:** ```typescript // Before deployment validation const research = await orchestrator.answerResearchQuestion( `Is the ${environment} environment ready for deployment? Check: - Required services running - Database migrations status - Configuration compliance - Resource availability` ); if (research.confidence < 0.8) { return { ready: false, blocker: 'Environment verification failed', evidence: research.answer }; } ``` **Example Use Case:** Before deploying to production, check if: - PostgreSQL is running and migrated - Redis cache is available - Kubernetes cluster has sufficient resources - Environment variables match ADR decisions --- ### 2. environment-analysis-tool.ts 🔴 **Current Purpose:** - Analyzes environment context and compliance - Tracks environment snapshots via memory - Uses Generated Knowledge Prompting (GKP) **Research-Driven Benefits:** - **Live environment inspection** (not assumptions) - **Real-time compliance checking** (actual vs documented) - **Drift detection** (configuration changes over time) - **Red Hat ecosystem support** (OpenShift, Podman, Ansible) **Integration Points:** ```typescript // Current environment analysis const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory); const infraResearch = await orchestrator.answerResearchQuestion( 'What is our complete infrastructure stack? Include container tech, orchestration, databases, caching, message queues, and monitoring.' ); const complianceResearch = await orchestrator.answerResearchQuestion( `Based on ADRs, verify compliance for: ${adrDecisions.join(', ')}` ); ``` **Example Use Case:** Generate environment report showing: - Kubernetes cluster running v1.28 (ADR states v1.27+) ✅ - PostgreSQL 14 deployed (ADR states 13+) ✅ - Redis missing (ADR requires Redis) ❌ - Podman containers running (Red Hat environment detected) ✅ --- ### 3. deployment-guidance-tool.ts 🔴 **Current Purpose:** - Generates deployment guidance from ADRs - Creates deployment scripts and configs - Provides environment-specific guidance **Research-Driven Benefits:** - **Infrastructure-aware recommendations** (actual capabilities) - **Environment-specific steps** (K8s vs OpenShift vs bare metal) - **Current state migration paths** (from Docker to K8s) - **Red Hat tooling integration** (oc, podman, ansible commands) **Integration Points:** ```typescript // Generate deployment guidance const currentState = await orchestrator.answerResearchQuestion( 'What deployment tools and platforms are currently available? Check for kubectl, oc, docker, podman, ansible.' ); const targetState = extractAdrDecisions(adrs); // AI generates migration path from current to target const aiExecutor = getAIExecutor(); const guidance = await aiExecutor.executeStructuredPrompt( `Current: ${currentState.answer} Target (from ADRs): ${targetState} Generate step-by-step deployment guidance using available tools.`, ... ); ``` **Example Use Case:** ADR says "Deploy with Kubernetes", but research finds: - OpenShift (Red Hat) is running - `oc` CLI available - No `kubectl` installed → Generate OpenShift-specific deployment guide using `oc` commands instead of `kubectl` --- ### 4. review-existing-adrs-tool.ts 🔴 **Current Purpose:** - Reviews existing ADRs against code implementation - Uses tree-sitter for accurate code analysis - Identifies gaps and suggests updates **Research-Driven Benefits:** - **Verify ADR implementation** (code + infrastructure) - **Detect architectural drift** (decision vs reality) - **Environment compliance** (ADR says K8s, is K8s running?) - **Red Hat compliance** (ADR mentions OpenShift, verify deployment) **Integration Points:** ```typescript // Review ADR compliance for (const adr of adrs) { // Current: Tree-sitter code analysis ✅ const codeCompliance = await analyzeCodeCompliance(adr); // NEW: Research-driven infrastructure validation const infraResearch = await orchestrator.answerResearchQuestion( `ADR "${adr.title}" states: "${adr.decision}". Verify this is implemented in the current environment.` ); // AI analyzes gap between decision and reality const aiExecutor = getAIExecutor(); const gapAnalysis = await aiExecutor.executeStructuredPrompt( `ADR Decision: ${adr.decision} Code Analysis: ${codeCompliance} Infrastructure Reality: ${infraResearch.answer} Identify gaps and recommend updates.`, ... ); } ``` **Example Use Case:** ADR-0012: "Use Redis for session storage" - ✅ Code analysis: Found Redis client in code - ❌ Infrastructure: No Redis detected in environment - 🟡 Recommendation: Deploy Redis or update ADR to reflect current caching strategy --- ### 5. deployment-analysis-tool.ts 🔴 **Current Purpose:** - Analyzes deployment progress - Verifies completion with outcome rules - Tracks CI/CD pipeline status **Research-Driven Benefits:** - **Actual deployment verification** (not just CI logs) - **Service health checks** (pods running, services responding) - **Post-deployment validation** (migrations ran, caches warmed) - **Environment state confirmation** (new version deployed) **Integration Points:** ```typescript // Verify deployment completion const deploymentResearch = await orchestrator.answerResearchQuestion( `Deployment ${deploymentId} completed in CI/CD. Verify in ${environment} environment: - New version is running - All pods/containers healthy - Database migrations applied - Services responding to health checks` ); if (deploymentResearch.confidence < 0.9) { return { status: 'verification_failed', confidence: deploymentResearch.confidence, issues: deploymentResearch.sources.filter(s => !s.found) }; } ``` **Example Use Case:** CI/CD says deployment succeeded, but research finds: - ✅ New pods started in Kubernetes - ❌ Old pods still running (rollout incomplete) - ✅ Database migrations ran - ❌ Redis cache not cleared (stale data) → Mark deployment as "incomplete" and create follow-up tasks --- ### 6. troubleshoot-guided-workflow-tool.ts 🔴 **Current Purpose:** - Systematic troubleshooting workflow for failures - Analyzes test failures, deployment failures, runtime errors - Stores troubleshooting sessions in memory - Triggers ADR suggestions for recurring failures **Research-Driven Benefits:** - **Live diagnosis** - Check actual environment state during troubleshooting - **Root cause identification** - Verify suspected causes against reality - **Environment correlation** - Link failures to infrastructure issues - **Real-time validation** - Test fixes against actual environment **Critical Integration Points:** ```typescript // When analyzing a failure async function analyzeFailure(failure: FailureInfo) { const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory); // Step 1: Research current environment state const envResearch = await orchestrator.answerResearchQuestion( `Diagnose failure in ${failure.failureDetails.environment || 'production'}: Error: ${failure.failureDetails.errorMessage} Check: - Services health (databases, caches, message queues) - Recent deployments or config changes - Resource availability (CPU, memory, disk) - Network connectivity - Log patterns for this error` ); // Step 2: Research failure pattern history const patternResearch = await orchestrator.answerResearchQuestion( `Has this error occurred before? Search logs and project history: "${failure.failureDetails.errorMessage.substring(0, 100)}"` ); // Step 3: AI-powered root cause analysis const aiExecutor = getAIExecutor(); if (aiExecutor.isAvailable()) { const diagnosis = await aiExecutor.executeStructuredPrompt( `Failure Type: ${failure.failureType} Error: ${failure.failureDetails.errorMessage} Stack Trace: ${failure.failureDetails.stackTrace} Current Environment State: ${envResearch.answer} Historical Patterns: ${patternResearch.answer} Provide root cause analysis and troubleshooting steps.`, null, { temperature: 0.2, systemPrompt: 'You are a DevOps expert. Diagnose based on ACTUAL environment data.' } ); return { rootCause: diagnosis.data.rootCause, troubleshootingSteps: diagnosis.data.steps, environmentEvidence: envResearch.sources, confidence: envResearch.confidence }; } } ``` **Example Use Cases:** **1. Database Connection Failure:** ``` Error: "Connection to PostgreSQL failed: timeout after 30s" Research discovers: - ✅ PostgreSQL pod running in Kubernetes - ❌ PostgreSQL pod restarted 5 minutes ago (OOM kill) - ✅ Connection string correct - ❌ Memory limit: 512MB (logs show 498MB used) Root Cause: PostgreSQL memory limit too low Fix: Increase memory limit to 1GB in deployment config ``` **2. Deployment Failure:** ``` Error: "Deployment failed: ImagePullBackOff" Research discovers: - ❌ Docker image tag "v2.3.4" not found in registry - ✅ Latest successful deployment used "v2.3.3" - ✅ Registry credentials valid - ✅ Network access to registry working Root Cause: Image tag typo in deployment script Fix: Correct tag to "v2.3.4" (not "v2.3.4") ``` **3. Performance Issue:** ``` Error: "API response time > 5s (SLA: 500ms)" Research discovers: - ✅ Application pods healthy - ❌ Redis cache empty (restarted 10 min ago, no persistence) - ✅ Database queries fast (<50ms) - ❌ Cache hit rate: 0% (normally 95%) Root Cause: Redis lost data on restart, no persistence configured Fix: Enable Redis AOF persistence in configuration ``` **4. Test Failure (Intermittent):** ``` Error: "Test 'user_login_test' fails randomly (30% failure rate)" Research discovers: - ✅ Test passes in local Docker - ❌ Test fails in CI (Kubernetes) - ✅ Database seeds correctly - ❌ Redis in CI uses shared instance (race condition) Root Cause: Shared Redis causing test isolation issues Fix: Use Redis namespace per test or dedicated Redis per CI job ``` **Key Benefits:** 1. **Fast diagnosis** - Research reveals actual state in seconds 2. **No assumptions** - Based on real logs, metrics, configs 3. **Historical context** - Pattern matching against past failures 4. **Environment-aware** - Different troubleshooting for K8s vs Docker vs bare metal 5. **Red Hat support** - Troubleshoot OpenShift, Podman, Ansible issues **Integration Impact:** - **Before:** Troubleshooting based on symptoms and assumptions - **After:** Troubleshooting grounded in actual environment state - **Result:** Faster root cause identification, fewer wrong paths taken --- ### 7. interactive-adr-planning-tool.ts 🔴 **Current Purpose:** - Multi-phase interactive ADR creation wizard - **7-phase workflow**: Problem Definition → Research → Options → Decision → Impact → Implementation → ADR Generation - Guides users through structured decision-making - Already integrates research capabilities (but can be enhanced!) **Research-Driven Benefits:** - **Phase 1: Problem Definition** - Start with current infrastructure reality - **Phase 2: Research & Analysis** - Automatic environment discovery - **Phase 3: Option Exploration** - Evaluate options against actual capabilities - **Phase 4: Decision Making** - Validate decisions against infrastructure - **Phase 5: Impact Assessment** - Check real impact on running systems - **Phase 6: Implementation Planning** - Generate tasks based on actual gaps - **Phase 7: ADR Generation** - Include evidence from live environment **Critical Integration Points (Per Phase):** ```typescript // PHASE 1: Problem Definition with Environment Context async function startSession(args) { const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory); // Auto-discover current state for context const infraContext = await orchestrator.answerResearchQuestion( 'What is our complete current infrastructure? Include container orchestration, databases, caching, message queues, monitoring, and deployment tools.' ); return { sessionId, phase: 'problem_definition', environmentContext: { currentStack: infraContext.answer, confidence: infraContext.confidence, sources: infraContext.sources.map(s => s.type), capabilities: infraContext.sources .filter(s => s.type === 'environment') .map(s => s.data) }, guidance: `# ADR Planning Session ## Current Infrastructure (Auto-Discovered) ${infraContext.answer} **Data Sources:** ${infraContext.sources.map(s => s.type).join(', ')} **Confidence:** ${(infraContext.confidence * 100).toFixed(1)}% Now, what architectural decision needs to be made?` }; } // PHASE 2: Research & Analysis (Enhanced) async function researchPhase(session) { const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory); // Research related to problem statement const problemResearch = await orchestrator.answerResearchQuestion( `Problem: ${session.context.problemStatement} Research current approaches, existing solutions, and related patterns in our codebase and infrastructure.` ); // Find similar ADRs and patterns const similarDecisions = await orchestrator.answerResearchQuestion( `Have we made similar decisions before? Search ADRs and project history for: ${session.context.problemStatement}` ); return { researchFindings: [ { source: 'current_implementation', insight: problemResearch.answer, relevance: problemResearch.confidence }, { source: 'historical_decisions', insight: similarDecisions.answer, relevance: similarDecisions.confidence } ] }; } // PHASE 3: Option Exploration (Feasibility Checking) async function exploreOptions(session) { const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory); const aiExecutor = getAIExecutor(); for (const option of session.context.options) { // Check if option is feasible with current infrastructure const feasibilityResearch = await orchestrator.answerResearchQuestion( `Can we implement "${option.name}"? Check: - Do we have required infrastructure? - Are necessary tools available? - What would need to be added?` ); // AI evaluates option against reality if (aiExecutor.isAvailable()) { const evaluation = await aiExecutor.executeStructuredPrompt( `Option: ${option.name} Current Infrastructure: ${session.environmentContext.currentStack} Feasibility Research: ${feasibilityResearch.answer} Evaluate: 1. Can we do this with current infrastructure? 2. What needs to be added/changed? 3. Estimated effort level (low/medium/high) 4. Risk assessment`, null, { temperature: 0.2 } ); option.feasibilityScore = evaluation.data.feasibility; option.requiredChanges = evaluation.data.changes; option.effort = evaluation.data.effort; option.risks = evaluation.data.risks; } } return { optionsWithFeasibility: session.context.options }; } // PHASE 5: Impact Assessment (Real Impact Analysis) async function assessImpact(session) { const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory); // Research systems that will be affected const impactResearch = await orchestrator.answerResearchQuestion( `Decision: ${session.context.selectedOption.name} What systems, services, and configurations will be impacted? Check running services, deployments, and configurations.` ); // Research dependencies const dependencyResearch = await orchestrator.answerResearchQuestion( `What other systems/services depend on the components affected by: ${session.context.selectedOption.name}?` ); return { impacts: { technical: extractImpacts(impactResearch, 'technical'), dependencies: extractImpacts(dependencyResearch, 'dependencies'), infrastructureChanges: impactResearch.sources .filter(s => s.type === 'environment') .map(s => s.data) } }; } ``` **Example Use Case: "Should we migrate from Docker to Kubernetes?"** **Phase 1: Problem Definition** ``` Auto-discovered environment: - ✅ Docker 24.0.0 running - ✅ 15 containers currently deployed - ❌ No Kubernetes cluster - ✅ docker-compose.yml configurations - 🟡 docker-compose used in deployment scripts Context: User wants to evaluate K8s migration ``` **Phase 2: Research & Analysis** ``` Research findings: - Current: All services dockerized - Deployment: Manual docker-compose up - Monitoring: Docker stats only - Scaling: Manual container spawn - Historical: ADR-0003 chose Docker for simplicity ``` **Phase 3: Option Exploration** ``` Option A: Keep Docker - Feasibility: ✅ Already implemented - Effort: Low (no changes) - Risks: Limited scaling Option B: Migrate to Kubernetes - Feasibility: 🟡 Possible but requires cluster - Effort: High (new infra + migration) - Risks: Complexity, learning curve - Required: Install K8s, convert configs Option C: Hybrid (Docker + K8s) - Feasibility: 🟡 Complex to manage - Effort: Very High - Risks: Operational complexity ``` **Phase 4: Decision Making** (with AI) ``` Selected: Option B (Kubernetes) Rationale: Growth requires better orchestration Supporting Evidence: - CPU usage consistently >80% (needs auto-scaling) - Manual deployments taking 30+ min - Service discovery becoming complex ``` **Phase 5: Impact Assessment** ``` Technical Impacts: - Need to provision K8s cluster (GKE/EKS/OpenShift) - Convert 15 docker-compose services to K8s manifests - Update CI/CD for kubectl deployments - Implement monitoring (Prometheus/Grafana) Dependencies: - Database connections (update service names) - Inter-service communication (use K8s services) - Configuration management (ConfigMaps/Secrets) - Persistent storage (PersistentVolumeClaims) ``` **Phase 6: Implementation Planning** (Research-Generated) ``` Tasks generated based on ACTUAL gaps: 1. Provision Kubernetes cluster 2. Convert docker-compose.yml → K8s manifests (15 services) 3. Update deployment scripts (remove docker-compose) 4. Configure kubectl contexts 5. Migrate environment variables → ConfigMaps 6. Test service-to-service communication 7. Update monitoring to Kubernetes metrics ``` **Key Benefits:** 1. **Decisions grounded in reality** - Not hypothetical scenarios 2. **Feasibility pre-checked** - Options validated against actual infrastructure 3. **Accurate impact assessment** - Real dependencies identified 4. **Realistic implementation plans** - Tasks based on actual gaps 5. **Evidence-based ADRs** - Citations to actual infrastructure state **Integration Impact:** - **Before:** Planning based on documentation and assumptions - **After:** Planning grounded in live infrastructure inspection - **Result:** Better decisions, realistic timelines, fewer surprises --- ## MEDIUM Priority Tools (Secondary Integration) ### 8. research-integration-tool.ts 🟡 **Current Purpose:** Research integration patterns **Research Benefit:** Can use research to find actual API patterns in codebase **Integration:** Low priority - already research-focused --- ### 9. research-question-tool.ts 🟡 **Current Purpose:** Generate research questions **Research Benefit:** Generate context-aware questions based on actual project state **Integration:** Use research to understand project better before generating questions --- ### 10. adr-bootstrap-validation-tool.ts 🟡 **Current Purpose:** Validate ADR bootstrap setup **Research Benefit:** Check if infrastructure supports ADR decisions **Integration:** Verify environment prerequisites match ADR requirements --- ## Tools That Don't Need Research Integration ⚪ These tools perform operations that don't benefit from live infrastructure data: 1. **mcp-planning-tool.ts** - Planning/design tool 2. **smart-git-push-tool.ts** - Git operations 3. **smart-git-push-tool-v2.ts** - Git operations 4. **tool-chain-orchestrator.ts** - Orchestration only 5. **rule-generation-tool.ts** - Rule generation 6. **content-masking-tool.ts** - Security/formatting 7. **memory-loading-tool.ts** - Data loading --- ## Recommended Integration Sequence ### Phase 1: Critical Operations (Week 1) 1. **deployment-readiness-tool.ts** - Critical for safe deployments 2. **troubleshoot-guided-workflow-tool.ts** - Faster incident resolution 3. **interactive-adr-planning-tool.ts** - Evidence-based planning ### Phase 2: Deployment & Validation (Week 2) 4. **deployment-analysis-tool.ts** - Verify deployment success 5. **deployment-guidance-tool.ts** - Provide accurate guidance 6. **review-existing-adrs-tool.ts** - ADR compliance checking ### Phase 3: Environment Tools (Week 3) 7. **environment-analysis-tool.ts** - Environment validation 8. **research-question-tool.ts** - Better question generation ### Phase 4: Bootstrap Tools (Week 4) 9. **adr-bootstrap-validation-tool.ts** - Setup validation 10. **research-integration-tool.ts** - Pattern discovery --- ## Integration Template For each tool, follow this pattern: ```typescript import { ResearchOrchestrator } from '../utils/research-orchestrator.js'; import { getAIExecutor } from '../utils/ai-executor.js'; export async function toolFunction(args) { // Step 1: Research current state const orchestrator = new ResearchOrchestrator(projectPath, adrDirectory); const research = await orchestrator.answerResearchQuestion( 'Tool-specific research question about current infrastructure' ); // Step 2: Use AI for intelligent analysis (if available) const aiExecutor = getAIExecutor(); let result; if (aiExecutor.isAvailable()) { const aiAnalysis = await aiExecutor.executeStructuredPrompt( `Based on this research: ${research.answer} Generate tool-specific output...`, null, { temperature: 0.2, systemPrompt: 'Use ACTUAL research data, not assumptions' } ); result = aiAnalysis.data; } else { // Fallback to non-AI processing result = processWithoutAI(research); } // Step 3: Format response with research context return { content: [{ type: 'text', text: formatWithResearchContext(result, research) }] }; } ``` --- ## Benefits of Research-Driven Integration ### 1. Accuracy - Decisions based on **actual infrastructure** vs assumptions - No hallucinations about environment state - Red Hat ecosystem support (OpenShift, Podman, Ansible) ### 2. Confidence Scoring - Quantified confidence in recommendations - Web search fallback when local data insufficient - Transparent source attribution ### 3. Smaller LLM Support - Facts ground smaller models effectively - Less reasoning needed when data is provided - Better performance with Claude Haiku, GPT-3.5-turbo ### 4. Cost Efficiency - Local/environment queries are free - Cached AI responses reduce costs - Only hit web search when truly needed ### 5. Real-Time Currency - Always reflects current state - No stale documentation issues - Detects drift immediately --- ## Testing Strategy For each integrated tool, add tests covering: 1. **With high-confidence research** (>0.8) 2. **With low-confidence research** (<0.5, needs web search) 3. **With AI executor available** 4. **Without AI executor (fallback mode)** 5. **With Red Hat environment** (OpenShift, Podman, Ansible) 6. **With standard environment** (Kubernetes, Docker) Example test structure: ```typescript describe('tool with research integration', () => { it('should use high-confidence research data', async () => { // Mock research with 0.9 confidence // Verify tool uses research directly }); it('should recommend web search when confidence low', async () => { // Mock research with 0.3 confidence // Verify tool suggests web search }); it('should work without AI executor', async () => { // Mock AI executor unavailable // Verify rule-based fallback works }); }); ``` --- ## Next Steps 1. ✅ **Completed**: adr-suggestion-tool.ts, adr-validation-tool.ts, perform-research-tool.ts 2. 🔴 **Start Phase 1**: Integrate deployment tools (readiness, analysis, guidance) 3. 🟡 **Plan Phase 2**: Review-existing-adrs-tool.ts, environment-analysis-tool.ts 4. 📝 **Document**: Update README with research-driven capabilities 5. 🧪 **Test**: Comprehensive test coverage for all integrations --- ## Estimated Effort - **HIGH priority tool integration**: 3-4 hours each (7 tools = 21-28 hours) - **MEDIUM priority tool integration**: 2-3 hours each (3 tools = 6-9 hours) - **Testing**: 2 hours per tool (10 tools = 20 hours) - **Documentation**: 4 hours - **Total**: ~51-61 hours (1.5-2 weeks full-time) --- ## Success Metrics - ✅ All 7 HIGH priority tools integrated - ✅ 90%+ test coverage for integrated tools - ✅ Documentation updated with research-driven examples - ✅ Zero regression in existing functionality - ✅ Confidence scores > 0.7 for typical queries - ✅ Red Hat environment support working - ✅ Troubleshooting time reduced by 50%+ - ✅ ADR planning decisions evidence-based --- ## Conclusion Research-driven architecture integration will **significantly improve** 10 out of 20 tools by grounding them in actual infrastructure reality. The **deployment tools** (readiness, analysis, guidance), **troubleshooting tool**, and **interactive planning tool** are the highest priority as they directly impact deployment safety, incident resolution speed, and decision quality. **Key Wins:** 1. Deployments verified against actual environment (not assumptions) 2. **Troubleshooting based on live diagnosis** (root cause in minutes, not hours) 3. **ADR planning grounded in real infrastructure** (feasible options, accurate impacts) 4. ADR compliance checked against running infrastructure 5. Red Hat ecosystem (OpenShift, Podman, Ansible) first-class support 6. Smaller LLMs work effectively with factual grounding 7. Cost-efficient (local queries, cached AI, minimal web search) **Special Impact: Top 3 Tools** 🎯 **1. Troubleshooting Tool** - Database connection issues → Check if DB is actually running - Deployment failures → Verify actual pod/container state - Performance problems → Check real resource usage, cache state - **Saves hours per incident** by providing instant environment visibility **2. Interactive Planning Tool** - Feasibility checking: "Can we do this with our current infrastructure?" - Impact assessment: "What will this decision actually affect?" - Implementation planning: "What specific gaps need to be filled?" - **Prevents bad decisions** by exposing infrastructure reality upfront **3. Deployment Readiness Tool** - Pre-deployment validation: "Is the environment actually ready?" - Infrastructure verification: "Do we have necessary services running?" - Configuration compliance: "Does deployed config match requirements?" - **Prevents deployment failures** before they happen

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server