reflexion-implementation-strategy.md•12.6 kB
# Reflexion Framework Implementation Strategy
## Overview
This document outlines the detailed implementation strategy for the Reflexion framework, including the Actor-Evaluator-Self-Reflection pattern, memory management systems, and learning workflows for continuous improvement in MCP ADR Analysis Server tools.
## Implementation Architecture
### Core Components Implementation
#### 1. Actor Component
**Purpose**: Execute tasks with memory-enhanced context and learning integration
**Implementation Approach**:
```typescript
// Pseudo-implementation structure
class ReflexionActor {
async executeWithMemory(
task: TaskDefinition,
context: any,
memories: ReflexionMemory[]
): Promise<TaskAttempt>
}
```
**Actor Responsibilities**:
- **Memory Integration**: Incorporate relevant past experiences into current task execution
- **Context Enhancement**: Enrich task context with lessons learned and strategies
- **Strategy Selection**: Choose optimal approaches based on past successes and failures
- **Trajectory Generation**: Create detailed execution paths for evaluation and learning
#### 2. Evaluator Component
**Purpose**: Assess performance using multiple criteria and generate actionable feedback
**Evaluation Criteria Implementation**:
##### Task Success (Weight: 25%)
- **Metric**: Binary success/failure with quality gradations
- **Evaluation**: Compare intended vs actual outcomes
- **Scoring**: 0-1 scale with partial credit for near-misses
##### Quality Assessment (Weight: 20%)
- **Metric**: Multi-dimensional quality evaluation
- **Evaluation**: Accuracy, completeness, relevance, clarity
- **Scoring**: Weighted average of quality dimensions
##### Efficiency Analysis (Weight: 15%)
- **Metric**: Resource utilization and time optimization
- **Evaluation**: Compare to baseline and previous attempts
- **Scoring**: Relative efficiency improvement
##### Innovation Evaluation (Weight: 10%)
- **Metric**: Novelty and creativity in approach
- **Evaluation**: Assess unique strategies and solutions
- **Scoring**: Creativity and effectiveness balance
##### Learning Integration (Weight: 30%)
- **Metric**: How well past lessons were applied
- **Evaluation**: Evidence of memory utilization and improvement
- **Scoring**: Learning application effectiveness
#### 3. Self-Reflection Component
**Purpose**: Generate linguistic feedback and extract actionable lessons
**Reflection Types Implementation**:
##### Success Analysis
- **Focus**: What worked well and why
- **Output**: Successful patterns, effective strategies, replicable approaches
- **Integration**: Strengthen successful memory patterns
##### Failure Analysis
- **Focus**: What went wrong and how to prevent it
- **Output**: Error patterns, failure modes, prevention strategies
- **Integration**: Create warning memories and avoidance strategies
##### Pattern Recognition
- **Focus**: Recurring themes across multiple attempts
- **Output**: Meta-patterns, general principles, transferable insights
- **Integration**: Build semantic memory from episodic experiences
##### Strategy Refinement
- **Focus**: How to improve approaches and methods
- **Output**: Enhanced strategies, optimized workflows, better practices
- **Integration**: Update procedural memory with refined methods
## Memory Management System
### Memory Types and Storage
#### 1. Episodic Memory
**Content**: Specific task attempts and their outcomes
**Structure**:
```json
{
"memoryId": "episode_adr_suggestion_2024_001",
"taskType": "adr-suggestion",
"context": { "project": "microservices-platform" },
"outcome": { "success": true, "userRating": 4.5 },
"lessons": ["Domain knowledge crucial for relevance"],
"applicableScenarios": ["microservices", "distributed-systems"]
}
```
#### 2. Semantic Memory
**Content**: General principles and knowledge extracted from experiences
**Structure**:
```json
{
"memoryId": "semantic_adr_principles_001",
"principle": "ADRs should address specific architectural concerns",
"evidence": ["episode_001", "episode_015", "episode_032"],
"confidence": 0.85,
"applicability": ["all-adr-tasks"]
}
```
#### 3. Procedural Memory
**Content**: Improved methods and step-by-step approaches
**Structure**:
```json
{
"memoryId": "procedure_context_analysis_v2",
"procedure": "Enhanced context analysis workflow",
"steps": ["1. Technology detection", "2. Pattern analysis", "3. Constraint identification"],
"improvements": ["Added constraint analysis step"],
"successRate": 0.78
}
```
#### 4. Meta-Memory
**Content**: Knowledge about learning patterns and memory effectiveness
**Structure**:
```json
{
"memoryId": "meta_learning_rate_analysis",
"insight": "Learning plateaus after 15-20 attempts without new challenges",
"evidence": ["learning_progress_adr", "learning_progress_analysis"],
"recommendation": "Introduce complexity variations every 20 attempts"
}
```
### Memory Persistence Using File System
#### File Organization Strategy
```
./reflexion-memory/
├── episodic/
│ ├── adr-suggestion/
│ ├── project-analysis/
│ └── research-integration/
├── semantic/
│ ├── principles/
│ ├── patterns/
│ └── best-practices/
├── procedural/
│ ├── workflows/
│ ├── strategies/
│ └── methods/
├── meta/
│ ├── learning-patterns/
│ ├── memory-effectiveness/
│ └── improvement-trends/
└── indexes/
├── memory-catalog.json
├── relevance-index.json
└── temporal-index.json
```
#### Memory Persistence Implementation
```typescript
// Prompt-driven memory persistence
export async function persistMemoryWithPrompt(memory: ReflexionMemory) {
const persistencePrompt = `
# Memory Persistence Request
Please save the following Reflexion memory to the appropriate file location.
## Memory Details
- **Memory ID**: ${memory.memoryId}
- **Type**: ${memory.memoryType}
- **Category**: ${memory.metadata.category}
- **Created**: ${memory.createdAt}
## Memory Content
${JSON.stringify(memory.content, null, 2)}
## File Operations Required
1. **Determine File Path**: Based on memory type and category
2. **Create Directory**: If it doesn't exist
3. **Save Memory File**: In JSON format with proper naming
4. **Update Index**: Add entry to memory catalog and relevant indexes
5. **Validate Storage**: Ensure file was saved correctly
## Expected File Structure
- Path: ./reflexion-memory/{type}/{category}/{memoryId}.json
- Index: ./reflexion-memory/indexes/memory-catalog.json
- Backup: Create backup if updating existing memory
Please execute these file operations and confirm successful storage.
`;
return {
content: [{ type: 'text', text: persistencePrompt }],
metadata: {
operation: 'memory_persistence',
memoryId: memory.memoryId,
memoryType: memory.memoryType
}
};
}
```
## Learning Workflows
### Workflow 1: Single Task Reflexion
**Duration**: 3-5 minutes per task
**Steps**:
1. **Memory Retrieval** (30s): Find relevant past experiences
2. **Task Execution** (60-180s): Execute with memory-enhanced context
3. **Performance Evaluation** (30s): Score outcomes against criteria
4. **Self-Reflection** (60s): Generate lessons and insights
5. **Memory Integration** (30s): Update memory system
### Workflow 2: Continuous Learning Loop
**Duration**: Ongoing across multiple tasks
**Process**:
1. **Pattern Detection**: Identify recurring themes across attempts
2. **Meta-Learning**: Learn about learning effectiveness
3. **Strategy Evolution**: Refine approaches based on accumulated evidence
4. **Knowledge Consolidation**: Strengthen validated memories, weaken contradicted ones
### Workflow 3: Cross-Task Learning Transfer
**Duration**: Variable based on task similarity
**Process**:
1. **Similarity Assessment**: Identify related task types and contexts
2. **Knowledge Transfer**: Apply lessons from one domain to another
3. **Adaptation**: Modify strategies for new contexts
4. **Validation**: Test transferred knowledge effectiveness
## Integration with MCP Tools
### Tool-Specific Learning Patterns
#### ADR Generation Tools
**Learning Focus Areas**:
- **Context Analysis Accuracy**: Learn to better understand project requirements
- **Stakeholder Alignment**: Improve ADR relevance and clarity
- **Decision Quality**: Learn from ADR adoption and feedback outcomes
**Reflexion Pattern**:
```typescript
export async function generateAdrsWithReflexion(context: any) {
// Step 1: Retrieve relevant memories
const memories = await retrieveRelevantMemories('adr-generation', context);
// Step 2: Create memory-enhanced prompt
const enhancedPrompt = await enhancePromptWithMemories(
createAdrGenerationPrompt(context),
memories
);
// Step 3: Execute with reflexion tracking
const result = await executeWithReflexion(enhancedPrompt, {
taskType: 'adr-generation',
evaluationCriteria: ['relevance', 'clarity', 'feasibility', 'completeness'],
memoryIntegration: true
});
return result;
}
```
#### Analysis Tools
**Learning Focus Areas**:
- **Technology Detection**: Improve accuracy of technology identification
- **Pattern Recognition**: Better identify architectural patterns
- **Context Understanding**: Enhanced project context analysis
#### Research Tools
**Learning Focus Areas**:
- **Question Quality**: Generate more effective research questions
- **Source Evaluation**: Better assess research source quality
- **Synthesis Skills**: Improve research integration and synthesis
### Memory-Enhanced Prompt Generation
```typescript
export async function enhancePromptWithMemories(
basePrompt: PromptObject,
memories: ReflexionMemory[]
): Promise<PromptObject> {
const memoryContext = memories.map(memory => ({
lesson: memory.content.summary,
applicability: memory.content.applicableScenarios,
confidence: memory.relevanceScore,
evidence: memory.content.evidence
}));
const enhancedPrompt = `
# Memory-Enhanced Task Execution
## Original Task
${basePrompt.prompt}
## Relevant Past Experiences
${memoryContext.map((mem, index) => `
### Experience ${index + 1} (Confidence: ${mem.confidence})
**Lesson**: ${mem.lesson}
**Applicable to**: ${mem.applicability.join(', ')}
**Evidence**: ${mem.evidence.join('; ')}
`).join('\n')}
## Memory-Informed Approach
Based on past experiences, please:
1. **Apply Relevant Lessons**: Use the lessons learned from similar situations
2. **Avoid Known Pitfalls**: Be aware of common mistakes and failure patterns
3. **Leverage Successful Strategies**: Build on approaches that have worked well
4. **Adapt to Context**: Modify strategies based on current context differences
## Enhanced Instructions
${basePrompt.instructions}
## Success Criteria
- Apply at least 2 relevant lessons from past experiences
- Demonstrate learning from previous mistakes
- Show improvement over baseline approaches
- Generate new insights for future learning
Execute the task with memory-informed decision making and document how past experiences influenced your approach.
`;
return {
prompt: enhancedPrompt,
instructions: basePrompt.instructions,
context: {
...basePrompt.context,
memoriesUsed: memories.map(m => m.memoryId),
memoryEnhanced: true
}
};
}
```
## Performance Optimization
### Memory Retrieval Optimization
- **Relevance Scoring**: Use context similarity and past success rates
- **Temporal Weighting**: Prefer recent memories while preserving valuable old ones
- **Category Filtering**: Focus on memories from similar task types
- **Quality Thresholding**: Only retrieve high-quality, validated memories
### Learning Efficiency
- **Incremental Updates**: Update memories incrementally rather than wholesale replacement
- **Batch Processing**: Process multiple related memories together
- **Lazy Loading**: Load memories only when needed
- **Compression**: Consolidate similar memories to reduce storage and retrieval overhead
### Resource Management
- **Memory Limits**: Implement configurable limits on memory storage
- **Cleanup Strategies**: Automatic removal of outdated or low-value memories
- **Caching**: Cache frequently accessed memories for faster retrieval
- **Indexing**: Maintain efficient indexes for fast memory search
This implementation strategy provides a comprehensive roadmap for building the Reflexion framework while maintaining the 100% prompt-driven architecture and ensuring effective learning and memory management across MCP tools.