Skip to main content
Glama

mcp-adr-analysis-server

by tosin2013
performance-testing.mdโ€ข8.06 kB
# โšก Performance Testing Guide **Learn how to test, benchmark, and optimize the performance of the MCP ADR Analysis Server.** --- ## ๐Ÿ“‹ Overview This guide covers: - Performance testing methodology - Benchmarking tools and techniques - Identifying bottlenecks - Optimization strategies - Monitoring and profiling --- ## ๐ŸŽฏ Prerequisites - MCP ADR Analysis Server installed - Node.js development environment - Basic understanding of performance concepts - Jest test framework (included) --- ## ๐Ÿš€ Quick Performance Check Run the built-in performance tests: ```bash # Run all tests including performance npm run test:performance # Run specific performance suite npm run test -- tests/performance/ ``` --- ## ๐Ÿ“Š Performance Benchmarks ### Current Performance Targets | Operation | Target | Current | | -------------------- | --------- | ------- | | ADR Analysis (small) | <2s | ~1.5s | | ADR Analysis (large) | <5s | ~3.8s | | File Operations | <100ms | ~50ms | | Cache Hit | <50ms | ~20ms | | AI Prompt Execution | <3s | ~2.5s | --- ## ๐Ÿ” Performance Testing Methods ### 1. Unit Performance Tests Test individual components: ```typescript // tests/performance/tool-performance.test.ts import { measurePerformance } from '../utils/test-helpers'; describe('Tool Performance', () => { it('should analyze ADR in under 2 seconds', async () => { const result = await measurePerformance(async () => { return await analyzeAdr('./sample-project/docs/adrs/001.md'); }); expect(result.duration).toBeLessThan(2000); expect(result.memoryUsed).toBeLessThan(50 * 1024 * 1024); // 50MB }); }); ``` ### 2. Load Testing Test under realistic load: ```typescript // tests/performance/load-test.ts import { runLoadTest } from '../utils/test-infrastructure'; describe('Load Testing', () => { it('should handle 100 concurrent requests', async () => { const results = await runLoadTest({ concurrency: 100, duration: 60000, // 1 minute requestsPerSecond: 10, }); expect(results.successRate).toBeGreaterThan(0.95); expect(results.averageLatency).toBeLessThan(500); }); }); ``` ### 3. Memory Profiling Check for memory leaks: ```bash # Run with memory profiling node --inspect --expose-gc dist/index.js # Use Chrome DevTools to analyze heap snapshots ``` --- ## ๐Ÿ› ๏ธ Optimization Techniques ### 1. Caching Strategy Implement intelligent caching: ```typescript import { CacheManager } from './utils/cache'; const cache = new CacheManager({ ttl: 3600000, // 1 hour maxSize: 1000, }); // Cache expensive operations const result = await cache.getOrSet('analysis:project123', async () => { return await performExpensiveAnalysis(); }); ``` ### 2. Parallel Processing Use parallel execution: ```typescript // Before: Sequential (slow) for (const file of files) { await analyzeFile(file); } // After: Parallel (fast) await Promise.all(files.map(file => analyzeFile(file))); ``` ### 3. Lazy Loading Load resources on demand: ```typescript // Lazy load tree-sitter parsers const getParser = memoize(async (language: string) => { return await import(`tree-sitter-${language}`); }); ``` ### 4. Stream Processing Process large files in chunks: ```typescript import { createReadStream } from 'fs'; async function analyzeLargeFile(filePath: string) { const stream = createReadStream(filePath); for await (const chunk of stream) { processChunk(chunk); } } ``` --- ## ๐Ÿ“ˆ Monitoring Performance ### 1. Enable Performance Monitoring ```bash # .env ENABLE_MONITORING=true MONITORING_LEVEL=detailed PERFORMANCE_LOG_PATH=./logs/performance.json ``` ### 2. Collect Metrics ```typescript import { MonitoringManager } from './utils/monitoring'; const monitor = MonitoringManager.getInstance(); // Track operation performance monitor.trackOperation('adr-analysis', async () => { return await analyzeAdr(path); }); // Get performance report const report = monitor.getPerformanceReport(); console.log(report); ``` ### 3. Performance Dashboard View real-time metrics: ```bash npm run monitor:dashboard ``` --- ## ๐Ÿ”ง Profiling Tools ### 1. Node.js Built-in Profiler ```bash # Generate CPU profile node --prof dist/index.js # Process the profile node --prof-process isolate-*.log > profile.txt ``` ### 2. Clinic.js ```bash # Install Clinic.js npm install -g clinic # Profile your application clinic doctor -- node dist/index.js clinic flame -- node dist/index.js clinic bubbleprof -- node dist/index.js ``` ### 3. Chrome DevTools ```bash # Start with inspector node --inspect dist/index.js # Open chrome://inspect in Chrome ``` --- ## ๐Ÿ“Š Benchmark Suite ### Running Benchmarks ```bash # Run all benchmarks npm run benchmark # Run specific benchmark npm run benchmark -- --grep "ADR Analysis" # Generate benchmark report npm run benchmark:report ``` ### Creating Custom Benchmarks ```typescript // benchmarks/custom-benchmark.ts import { Suite } from 'benchmark'; const suite = new Suite('Custom Operations'); suite .add('Operation A', async () => { await performOperationA(); }) .add('Operation B', async () => { await performOperationB(); }) .on('cycle', event => { console.log(String(event.target)); }) .on('complete', function () { console.log('Fastest is ' + this.filter('fastest').map('name')); }) .run({ async: true }); ``` --- ## ๐ŸŽฏ Performance Optimization Checklist ### Before Optimization - [ ] Establish baseline metrics - [ ] Identify critical paths - [ ] Profile current performance - [ ] Document bottlenecks ### During Optimization - [ ] Implement caching where appropriate - [ ] Use parallel processing for independent operations - [ ] Optimize database queries - [ ] Minimize AI API calls - [ ] Reduce file I/O operations ### After Optimization - [ ] Run performance tests - [ ] Compare with baseline - [ ] Document improvements - [ ] Update performance targets - [ ] Monitor in production --- ## ๐Ÿ› Common Performance Issues ### Issue 1: Slow AI Prompt Execution **Symptoms**: Prompts taking >5 seconds **Solutions**: - Reduce prompt complexity - Use prompt caching - Batch multiple prompts - Consider streaming responses ### Issue 2: Memory Leaks **Symptoms**: Memory usage grows over time **Solutions**: - Clear caches periodically - Release event listeners - Avoid circular references - Use weak references where appropriate ### Issue 3: Slow File Operations **Symptoms**: File reads/writes taking >100ms **Solutions**: - Use streaming for large files - Implement file caching - Batch file operations - Use async I/O ### Issue 4: High CPU Usage **Symptoms**: CPU constantly at 100% **Solutions**: - Limit concurrent operations - Use worker threads for heavy computation - Optimize algorithms - Profile and identify hot spots --- ## ๐Ÿ“š Related Documentation - **[Performance Design](../explanation/performance-design.md)** - Architecture overview - **[Caching Strategy](../explanation/caching-strategy.md)** - Caching details - **[Monitoring Guide](./monitoring.md)** - Production monitoring - **[Testing Guide](../TESTING_GUIDE.md)** - General testing practices --- ## ๐Ÿ’ก Best Practices 1. **Always measure before optimizing** - Profile first, optimize second - Focus on actual bottlenecks 2. **Set realistic performance targets** - Based on user needs - Achievable with current resources 3. **Test with realistic data** - Use production-like datasets - Test edge cases 4. **Monitor in production** - Track real-world performance - Alert on regressions 5. **Document optimizations** - Explain why and how - Track performance history --- ## ๐Ÿ’ฌ Need Help? - **Performance Issues?** โ†’ [Open an Issue](https://github.com/tosin2013/mcp-adr-analysis-server/issues) - **Questions?** โ†’ [Troubleshooting Guide](./troubleshooting.md) - **Documentation** โ†’ [API Reference](../reference/api-reference.md) --- _Last Updated: 2025-10-12_

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server