Skip to main content
Glama

mcp-adr-analysis-server

by tosin2013
mcp-architecture-flow.md4 kB
# MCP ADR Analysis Server Architecture Flow This document shows the system architecture and data flow using Mermaid diagrams. ## System Architecture Overview ```mermaid graph TD A[AI Assistant<br/>Claude/Cursor/Cline] --> B[MCP Client] B --> C[MCP ADR Analysis Server] C --> D[Project Analysis Engine] C --> E[AI Execution Engine] C --> F[Cache Management] D --> G[File System Scanner] D --> H[Technology Detector] D --> I[Pattern Analyzer] E --> J[OpenRouter API] J --> K[Claude-3-Sonnet] J --> L[GPT-4o] C --> M[ADR Generator] C --> N[Security Scanner] C --> O[Deployment Validator] M --> P[././adrs/] N --> Q[Content Masking] O --> R[Health Scoring] style A fill:#e1f5fe style C fill:#fff3e0 style J fill:#f3e5f5 style P fill:#e8f5e8 ``` ## Tool Execution Flow ```mermaid sequenceDiagram participant User as AI Assistant User participant AI as AI Assistant participant MCP as MCP Client participant Server as ADR Analysis Server participant Engine as AI Execution Engine participant API as OpenRouter API User->>AI: "Analyze this React project" AI->>MCP: Tool call: analyze_project_ecosystem MCP->>Server: MCP Protocol Request alt AI Execution Mode Server->>Engine: Process with AI enhancement Engine->>API: Send enhanced prompts API-->>Engine: AI analysis results Engine-->>Server: Processed insights else Prompt-Only Mode Server->>Server: Generate analysis prompts end Server-->>MCP: Analysis results/prompts MCP-->>AI: Tool response AI-->>User: Actionable insights ``` ## Decision Flow Architecture ```mermaid flowchart LR A[Project Input] --> B{Existing ADRs?} B -->|Yes| C[discover_existing_adrs] B -->|No| D[suggest_adrs] C --> E[compare_adr_progress] D --> F[generate_adr_from_decision] E --> G{Implementation Gap?} F --> G G -->|Yes| H[generate_adr_todo] G -->|No| I[deployment_readiness] H --> J[manage_todo_json] I --> K{Ready for Deploy?} K -->|Yes| L[smart_git_push] K -->|No| M[Address Issues] M --> N[get_workflow_guidance] N --> H style A fill:#e3f2fd style L fill:#e8f5e8 style M fill:#fff3e0 ``` ## Security Analysis Flow ```mermaid graph TB A[Source Code] --> B[analyze_content_security] B --> C{Sensitive Content Found?} C -->|Yes| D[generate_content_masking] C -->|No| E[Security Clear ✅] D --> F[configure_custom_patterns] F --> G[apply_basic_content_masking] G --> H[validate_content_masking] H --> I{Validation Passed?} I -->|Yes| J[Content Secured ✅] I -->|No| K[Update Patterns] K --> F style A fill:#f3e5f5 style E fill:#e8f5e8 style J fill:#e8f5e8 style K fill:#ffebee ``` ## Deployment Readiness Pipeline ```mermaid stateDiagram-v2 [*] --> Analyzing Analyzing --> SecurityScan: analyze_content_security SecurityScan --> SecurityPassed: No issues found SecurityScan --> SecurityFailed: Issues detected SecurityFailed --> Masking: generate_content_masking Masking --> SecurityScan: Re-validate SecurityPassed --> TestValidation: deployment_readiness TestValidation --> TestsPassed: All tests pass TestValidation --> TestsFailed: Tests failing TestsFailed --> FixRequired: Address issues FixRequired --> TestValidation: Re-run validation TestsPassed --> DeploymentReady: smart_git_push DeploymentReady --> [*]: # Deployment Complete SecurityFailed --> [*]: # Manual Intervention Required FixRequired --> [*]: # Development Needed ``` These diagrams illustrate the comprehensive workflow and architecture of the MCP ADR Analysis Server, showing how different components interact to provide AI-powered architectural analysis and decision support.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server