Skip to main content
Glama

mcp-adr-analysis-server

by tosin2013
context-file-tool-coverage.mdโ€ข9.5 kB
# How `.mcp-server-context.md` Helps with ALL 25 Tools ## Overview The `.mcp-server-context.md` file provides **comprehensive support for all 25+ tools** in the MCP ADR Analysis Server through multiple mechanisms: ## โœ… Complete Tool Coverage ### 1. **Tool Discovery** (All Tools) When LLMs `@.mcp-server-context.md`, they instantly see **all 25 tools organized by category**: ```markdown **ADR Management** (5 tools) - adr_suggestion, adr_validation, rule_generation, review_existing_adrs, adr_bootstrap_validation **Deployment & Infrastructure** (4 tools) - deployment_readiness, deployment_guidance, deployment_analysis, environment_analysis **Research & Analysis** (4 tools) - perform_research, research_question, research_integration, expand_analysis **Development Workflow** (5 tools) - smart_git_push, todo_management_v2, troubleshoot_guided_workflow, bootstrap_validation_loop, tool_chain_orchestrator **Memory & Context** (3 tools) - conversation_memory, memory_loading, get_server_context **Cloud & Database** (3 tools) - llm_web_search, llm_cloud_management, llm_database_management **Other** (4 tools) - content_masking, interactive_adr_planning, smart_score, mcp_planning ``` **Benefit**: LLMs know **what tools exist** and **what they do** without querying. --- ### 2. **Usage Patterns** (All Tools) The analytics section tracks usage for **every tool**: ```markdown ## ๐Ÿ“Š Recent Analytics ### Tool Usage (Last 7 Days) 1. adr_suggestion: 34 calls - 97% success 2. smart_score: 28 calls - 100% success 3. deployment_readiness: 15 calls - 93% success 4. environment_analysis: 12 calls - 100% success 5. perform_research: 8 calls - 88% success ... ``` **Benefit**: LLMs see **which tools are working well** and **which are frequently used**. --- ### 3. **Tool Chains** (All Tools) The patterns section shows **successful multi-tool workflows**: ```markdown ### Successful Tool Chains 1. adr_suggestion โ†’ adr_validation โ†’ smart_score: 12 times 2. perform_research โ†’ research_integration โ†’ adr_suggestion: 8 times 3. environment_analysis โ†’ deployment_readiness โ†’ deployment_guidance: 6 times 4. review_existing_adrs โ†’ rule_generation โ†’ adr_bootstrap_validation: 4 times ``` **Benefit**: LLMs learn **how to combine tools effectively** for complex workflows. --- ### 4. **Context Awareness** (All Tools) Every tool execution is tracked in the knowledge graph: ```markdown ### Active Intents **Recent Intents**: - **Implement database migration** - executing โ””โ”€ Tools used: environment_analysis, deployment_analysis, llm_database_management - **Generate API documentation** - completed โ””โ”€ Tools used: review_existing_adrs, adr_suggestion, rule_generation ``` **Benefit**: LLMs see **what tools were used for what purpose** and **with what results**. --- ### 5. **Memory Integration** (All Tools) Memory entities track tool outputs: ```markdown ### Memory Entities **Entity Breakdown**: - Architectural Decisions: 12 (from adr_suggestion, adr_validation) - Technical Decisions: 8 (from deployment_guidance, environment_analysis) - Observations: 5 (from perform_research, expand_analysis) - Patterns: 3 (from smart_score, review_existing_adrs) ``` **Benefit**: LLMs understand **what knowledge each tool has contributed**. --- ## How Each Tool Category Benefits ### ADR Management Tools (5 tools) - **Discover**: See all ADR-related tools at once - **Learn**: Understand which ADR tools work together (e.g., suggestion โ†’ validation โ†’ bootstrap) - **Track**: See how many ADRs have been created/validated - **Improve**: Notice patterns in ADR creation (e.g., common themes, validation failures) ### Deployment Tools (4 tools) - **Discover**: See all deployment tools and their purposes - **Learn**: Understand deployment workflows (analysis โ†’ readiness โ†’ guidance) - **Track**: Monitor deployment readiness scores over time - **Improve**: Identify deployment blockers and patterns ### Research Tools (4 tools) - **Discover**: Know which research tools are available - **Learn**: See research โ†’ integration workflows - **Track**: Track research findings and their impact on decisions - **Improve**: Identify knowledge gaps that research should address ### Workflow Tools (5 tools) - **Discover**: See all development workflow tools - **Learn**: Understand orchestration patterns (todo โ†’ git โ†’ validation) - **Track**: Monitor workflow efficiency and bottlenecks - **Improve**: Optimize tool chains based on success rates ### Memory Tools (3 tools) - **Discover**: Understand memory management capabilities - **Learn**: See how conversation context is maintained - **Track**: Monitor memory entity growth and relationships - **Improve**: Identify memory gaps and optimization opportunities ### Cloud/Database Tools (3 tools) - **Discover**: Know infrastructure management capabilities - **Learn**: See cloud/database management patterns - **Track**: Monitor infrastructure operations - **Improve**: Identify infrastructure optimization opportunities --- ## Real-World Example: LLM Using Context for Multi-Tool Workflow ### User Request: ``` I need to add a new microservice for user authentication. What should I do? ``` ### LLM with Context File: ```markdown Looking at @.mcp-server-context.md, I can see: 1. **Available Tools**: We have adr_suggestion, environment_analysis, deployment_readiness, and deployment_guidance 2. **Recent Patterns**: Successful chain: environment_analysis โ†’ deployment_analysis โ†’ adr_suggestion 3. **Current State**: - 12 architectural decisions documented - Project score: 87/100 - Active intent: "Database migration strategy" 4. **Recommendations**: - Knowledge gap: "Authentication patterns not yet documented" **My Recommendation**: Let's follow this workflow: 1. Use `perform_research` to research authentication patterns 2. Use `environment_analysis` to understand current auth setup 3. Use `adr_suggestion` to generate authentication ADR 4. Use `deployment_guidance` for deployment strategy 5. Use `adr_validation` to validate the ADR This follows the successful pattern we've used before. ``` --- ## What the Context File DOESN'T Provide (By Design) ### โŒ Detailed Tool Schemas **Why**: Schemas change frequently, would make file too large **Solution**: LLMs can query MCP protocol for exact schemas when needed **Context file shows**: Tool names and high-level descriptions ### โŒ Real-Time Tool Status **Why**: Would require polling, adds complexity **Solution**: Context file updates after tool executions **Context file shows**: Recent usage patterns and success rates ### โŒ Tool-Specific Configuration **Why**: Configuration is environment-specific **Solution**: Tools read from environment/config files **Context file shows**: Project path and ADR directory --- ## How to Maximize Context File Effectiveness ### 1. **Regular Updates** Ensure the context file updates after every tool execution: ```typescript // After tool execution await generator.writeContextFile(kgManager, memoryManager, conversationManager); ``` ### 2. **Rich Analytics** Let the knowledge graph track tool usage: ```typescript await kgManager.addToolExecution(intentId, toolName, parameters, result, success); ``` ### 3. **Meaningful Intents** Create intents with clear, descriptive names: ```typescript await kgManager.createIntent('Implement authentication microservice', [ 'Research patterns', 'Design ADR', 'Plan deployment', ]); ``` ### 4. **Tool Chains** Document successful tool chains: ```typescript // Knowledge graph automatically tracks tool execution order // Context file surfaces successful patterns ``` --- ## Verification: Does It Help ALL Tools? | Tool Category | Tool Count | Discoverable? | Usage Tracked? | Patterns Shown? | | -------------- | ---------- | ------------- | -------------- | --------------- | | ADR Management | 5 | โœ… Yes | โœ… Yes | โœ… Yes | | Deployment | 4 | โœ… Yes | โœ… Yes | โœ… Yes | | Research | 4 | โœ… Yes | โœ… Yes | โœ… Yes | | Workflow | 5 | โœ… Yes | โœ… Yes | โœ… Yes | | Memory | 3 | โœ… Yes | โœ… Yes | โœ… Yes | | Cloud/Database | 3 | โœ… Yes | โœ… Yes | โœ… Yes | | Other | 4 | โœ… Yes | โœ… Yes | โœ… Yes | | **TOTAL** | **28** | **โœ… 100%** | **โœ… 100%** | **โœ… 100%** | --- ## Conclusion **YES - The context file helps with ALL 25+ tools by:** 1. โœ… **Listing all tools by category** (discovery) 2. โœ… **Tracking usage of every tool** (analytics) 3. โœ… **Showing successful tool chains** (patterns) 4. โœ… **Recording tool outputs in memory** (knowledge) 5. โœ… **Providing context for tool selection** (recommendations) **The context file is a force multiplier** - it makes LLMs more effective at using your entire tool ecosystem, not just a few popular tools. **Next Steps**: 1. Integrate the context generator into your server 2. Test with a complex multi-tool workflow 3. Observe how LLMs use the context to make better tool choices 4. Monitor tool usage patterns in the analytics section --- _This context file transforms your 25+ tools from a scattered toolkit into a coherent, discoverable, learnable system that LLMs can master._

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server