# Traefik MCP Server - Project Planning
## Project Overview
This project aims to create a Model Context Protocol (MCP) server that enables AI assistants to interact with Traefik, a modern cloud-native reverse proxy and load balancer. The MCP server will act as a bridge between AI assistants and Traefik instances, allowing natural language interaction with Traefik's configuration, monitoring, and management capabilities.
## What is Traefik?
Traefik is an open-source reverse proxy and load balancer designed for microservices and containerized applications. Key features include:
- Dynamic configuration through Docker labels, Kubernetes annotations, or file providers
- Automatic service discovery
- Built-in Let's Encrypt SSL certificate management
- HTTP/HTTPS, TCP, UDP protocol support
- API and dashboard for monitoring and management
- Middleware support for request transformation
## What is MCP (Model Context Protocol)?
MCP is an open standard created by Anthropic for connecting AI assistants to external systems and data sources. It provides a standardized way for AI applications to:
- Access data from various sources (databases, APIs, file systems)
- Execute tools and commands
- Provide context-aware responses
- Maintain secure, controlled interactions with external systems
## Project Goals
### Primary Objectives
1. **Read Operations**: Query Traefik configuration, status, and metrics
2. **Write Operations**: Modify Traefik configuration dynamically (routers, services, middlewares)
3. **Monitoring**: Access Traefik metrics, health checks, and logs
4. **Management**: Perform administrative tasks (restart services, reload configuration)
### Use Cases
- AI-assisted Traefik configuration management
- Natural language queries about routing rules and service status
- Automated troubleshooting and diagnostics
- Configuration generation based on requirements
- Real-time monitoring and health checks
## Technical Architecture
### Core Components
1. **MCP Server (Python)**
- Built using the official MCP Python SDK
- Exposes tools, resources, and prompts to AI clients
- Handles authentication to single Traefik instance
- Manages single persistent connection to Traefik
2. **Traefik Integration Layer**
- Communicates with Traefik API (REST endpoints)
- Parses and validates configuration files (YAML/TOML)
- Interacts with Traefik providers (Docker, Kubernetes, File)
- Handles dynamic configuration updates
3. **Data Models**
- Traefik configuration schemas (routers, services, middlewares, entrypoints)
- Response formatters for AI consumption
- Validation schemas for configuration changes
### Technology Stack
**Core Framework:**
- Python 3.10+
- MCP Python SDK (`mcp`)
- AsyncIO for asynchronous operations
**Traefik Integration:**
- `httpx` for async HTTP requests to Traefik API
- `pyyaml` for YAML configuration parsing
- `toml` for TOML configuration parsing
- `docker` library for Docker provider integration (optional)
- `kubernetes` library for K8s integration (optional)
**Development Tools:**
- `uv` for dependency management and project setup
- `pytest` for testing
- `pytest-asyncio` for async test support
- `black` and `ruff` for code formatting and linting
- Type hints with `mypy`
**Data Validation:**
- `pydantic` for data validation and serialization
**Optional Features:**
- `python-dotenv` for environment configuration
- `structlog` for structured logging
## Project Structure
```
traefik-mcp-server/
├── src/
│ └── traefik_mcp/
│ ├── __init__.py
│ ├── server.py # Main MCP server implementation
│ ├── tools/ # MCP tools (commands AI can execute)
│ │ ├── __init__.py
│ │ ├── config_tools.py # Configuration management tools
│ │ ├── query_tools.py # Query and inspection tools
│ │ └── monitoring_tools.py # Monitoring and metrics tools
│ ├── resources/ # MCP resources (data AI can access)
│ │ ├── __init__.py
│ │ └── traefik_data.py # Traefik data resources
│ ├── prompts/ # MCP prompts (templates)
│ │ ├── __init__.py
│ │ └── traefik_prompts.py
│ ├── traefik/ # Traefik integration
│ │ ├── __init__.py
│ │ ├── api_client.py # Traefik API client
│ │ ├── config_parser.py # Configuration parsing
│ │ └── models.py # Data models
│ └── utils/
│ ├── __init__.py
│ └── helpers.py
├── tests/
│ ├── __init__.py
│ ├── test_tools.py
│ ├── test_api_client.py
│ ├── test_config_parser.py
│ └── fixtures/
│ └── sample_configs/
├── docs/
│ ├── setup.md
│ ├── usage.md
│ └── api.md
├── examples/
│ ├── basic_query.py
│ ├── config_update.py
│ └── ai_client_configs/
│ ├── claude_desktop.json
│ └── cline.json
├── pyproject.toml
├── README.md
├── PLANNING.md
├── TASKS.md
└── .env.example
```
## MCP Server Capabilities
### Tools (Actions AI Can Perform)
1. **Configuration Tools**
- `get_router`: Retrieve specific router configuration
- `list_routers`: List all HTTP/TCP routers
- `create_router`: Create a new router
- `update_router`: Modify existing router
- `delete_router`: Remove router
- `get_service`: Retrieve specific service configuration
- `list_services`: List all services
- `create_service`: Create a new service
- `update_service`: Modify existing service
- `get_middleware`: Retrieve middleware configuration
- `list_middlewares`: List all middlewares
- `create_middleware`: Create new middleware
2. **Query Tools**
- `get_overview`: Get complete Traefik overview
- `search_routes`: Find routes matching criteria
- `get_entrypoints`: List all entrypoints
- `get_providers`: List active providers
3. **Monitoring Tools**
- `get_health`: Overall health check
- `get_metrics`: Retrieve Traefik metrics (if Prometheus enabled)
- `get_version`: Get Traefik version info
- `check_service_health`: Check specific service health
4. **Validation Tools**
- `validate_config`: Validate configuration syntax
- `dry_run`: Test configuration changes without applying
### Resources (Data AI Can Access)
1. **current-config**: Complete Traefik configuration snapshot
2. **routers-list**: Catalog of all routers with metadata
3. **services-list**: Catalog of all services
4. **middlewares-list**: Catalog of all middlewares
5. **health-status**: Real-time health status
### Prompts (Templates for Common Tasks)
1. **create-route**: Guide for setting up a new route
2. **troubleshoot-503**: Diagnostic workflow for 503 errors
3. **security-check**: Review configuration for security best practices
4. **ssl-setup**: Configure SSL/TLS for a service
## Configuration
The MCP server will support configuration through environment variables for a single Traefik instance:
```bash
# Required: Traefik API URL
TRAEFIK_API_URL=http://localhost:8080
# Optional: API Key (if Traefik API requires authentication)
TRAEFIK_API_KEY=your-api-key-here
# Optional: MCP Server Configuration
MCP_LOG_LEVEL=INFO
```
**Note**: The server is designed to manage exactly one Traefik instance. The connection details are specified when the MCP server starts and remain constant for the lifetime of the server process.
## Security Considerations
1. **Authentication**
- Support for Traefik API Basic Authentication
- Secure credential storage via environment variables
- Optional: API key authentication
2. **Authorization**
- Read-only mode vs. read-write mode configuration
- Validation before any write operations
- Audit logging for all configuration changes
3. **Validation**
- Input validation for all configuration changes
- Schema validation against Traefik configuration spec
- Dry-run capability to test changes safely
4. **Network Security**
- HTTPS for Traefik API communication
- Certificate verification options
- Timeout configurations to prevent hanging requests
## Development Phases
### Phase 1: Foundation (MVP)
**Goal**: Basic read-only MCP server that can query Traefik
- Set up project structure with uv
- Implement Traefik API client for read operations
- Create basic MCP server with core tools:
- `list_routers`
- `list_services`
- `get_overview`
- Implement basic resources (current-config)
- Write unit tests for API client
- Create README and setup documentation
**Success Criteria**: Can query Traefik configuration via an AI client
### Phase 2: Configuration Management
**Goal**: Enable write operations with safety checks
- Implement configuration modification tools
- Add validation layer
- Implement file-based provider support
- Add backup/rollback functionality
- Create comprehensive error handling
- Add integration tests
**Success Criteria**: Can safely modify Traefik configuration through AI
### Phase 3: Advanced Features
**Goal**: Enhanced monitoring and multi-provider support
- Docker provider integration
- Kubernetes provider integration (optional)
- Metrics and monitoring tools
- Advanced query capabilities (search, filter)
- Health check monitoring
- Prometheus metrics integration
**Success Criteria**: Full-featured management across multiple providers
### Phase 4: Polish & Production Ready
**Goal**: Production-ready release
- Comprehensive documentation
- Example configurations and use cases
- Performance optimization
- Error message improvements
- CI/CD setup
- Package for PyPI distribution
**Success Criteria**: Ready for community use
## Success Metrics
1. **Functionality**: All core CRUD operations working reliably
2. **Reliability**: 95%+ success rate for API calls
3. **Performance**: <1s response time for typical operations
4. **Usability**: Clear, helpful error messages and AI responses
5. **Documentation**: Setup guide allows new users to start in <10 minutes
## Potential Challenges & Solutions
| Challenge | Solution |
|-----------|----------|
| API version compatibility | Support multiple Traefik versions, detect version on connect |
| Real-time configuration changes | Implement polling or webhook support for updates |
| Complex configuration validation | Use Pydantic models matching Traefik schemas |
| Error handling from Traefik API | Wrap errors with helpful context for AI interpretation |
| State consistency | Implement caching with TTL, refresh mechanisms |
| Connection failures | Retry logic with exponential backoff, clear error messages |
## Future Enhancements
1. **Configuration Templates**: Pre-built templates for common scenarios (WordPress, API gateway, etc.)
2. **Migration Tools**: Help migrate from Nginx/Apache configurations
3. **Best Practices Checker**: Automated security and performance recommendations
4. **Visualization**: Generate configuration diagrams
5. **GitOps Integration**: Commit configuration changes to Git
6. **Backup Management**: Automated backup and restore workflows
7. **Multi-Instance Support**: Manage multiple Traefik instances (separate MCP servers or instance switching)
8. **Plugin Architecture**: Allow custom tools and extensions
## Testing Strategy
1. **Unit Tests**: Test individual components (API client, parsers, tools)
2. **Integration Tests**: Test MCP server with mock Traefik API
3. **E2E Tests**: Test with real Traefik instance (Docker-based)
4. **Manual Testing**: Test with AI client for UX validation
## Documentation Plan
1. **README.md**: Quick start, installation, basic usage
2. **docs/setup.md**: Detailed setup for different environments
3. **docs/usage.md**: Common tasks and examples
4. **docs/api.md**: Tool and resource reference
5. **docs/development.md**: Contributing guide
6. **examples/**: Code examples for different use cases
## Resources & References
- [Traefik Documentation](https://doc.traefik.io/traefik/)
- [Traefik API Reference](https://doc.traefik.io/traefik/operations/api/)
- [MCP Documentation](https://modelcontextprotocol.io/)
- [MCP Python SDK](https://github.com/modelcontextprotocol/python-sdk)
- [MCP Specification](https://spec.modelcontextprotocol.io/)