Skip to main content
Glama

read_live_algorithm

Retrieve live algorithm statistics, runtime data, and performance details from QuantConnect to monitor and analyze trading strategies in real-time.

Instructions

Read comprehensive live algorithm statistics, runtime data, and details.

Args: project_id: ID of the project with the live algorithm deploy_id: Optional deploy ID for specific algorithm (omit to get latest)

Returns: Dictionary containing detailed live algorithm statistics, runtime data, charts, and files

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
project_idYes
deploy_idNo

Implementation Reference

  • The primary handler function for the 'read_live_algorithm' MCP tool. It authenticates with QuantConnect, makes a POST request to the 'live/read' API endpoint, parses the response, and returns comprehensive live algorithm details including status, runtime statistics, charts, and files.
    @mcp.tool() async def read_live_algorithm( project_id: int, deploy_id: Optional[str] = None ) -> Dict[str, Any]: """ Read comprehensive live algorithm statistics, runtime data, and details. Args: project_id: ID of the project with the live algorithm deploy_id: Optional deploy ID for specific algorithm (omit to get latest) Returns: Dictionary containing detailed live algorithm statistics, runtime data, charts, and files """ auth = get_auth_instance() if auth is None: return { "status": "error", "error": "QuantConnect authentication not configured. Use configure_auth() first.", } try: # Prepare request data request_data = {"projectId": project_id} if deploy_id: request_data["deployId"] = deploy_id # Make API request response = await auth.make_authenticated_request( endpoint="live/read", method="POST", json=request_data ) # Parse response if response.status_code == 200: data = response.json() if data.get("success", False): # Extract all the detailed information from LiveAlgorithmResults deploy_id = data.get("deployId") status = data.get("status") message = data.get("message") clone_id = data.get("cloneId") launched = data.get("launched") stopped = data.get("stopped") brokerage = data.get("brokerage") security_types = data.get("securityTypes") project_name = data.get("projectName") data_center = data.get("dataCenter") public = data.get("public") files = data.get("files", []) runtime_statistics = data.get("runtimeStatistics", {}) charts = data.get("charts", {}) return { "status": "success", "project_id": project_id, "deploy_id": deploy_id, "live_status": status, "message": message, "clone_id": clone_id, "launched": launched, "stopped": stopped, "brokerage": brokerage, "security_types": security_types, "project_name": project_name, "data_center": data_center, "public": public, "files": files, "runtime_statistics": runtime_statistics, "charts": charts, "total_files": len(files), "has_runtime_stats": bool(runtime_statistics), "response": f"Successfully read live algorithm {deploy_id} for project {project_id}", } else: # API returned success=false errors = data.get("errors", ["Unknown error"]) return { "status": "error", "error": "Failed to read live algorithm", "details": errors, "project_id": project_id, "deploy_id": deploy_id, } elif response.status_code == 401: return { "status": "error", "error": "Authentication failed. Check your credentials and ensure they haven't expired.", } else: return { "status": "error", "error": f"API request failed with status {response.status_code}", "response_text": ( response.text[:500] if hasattr(response, "text") else "No response text" ), } except Exception as e: return { "status": "error", "error": f"Failed to read live algorithm: {str(e)}", "project_id": project_id, "deploy_id": deploy_id, }
  • Registers the live_tools module (containing read_live_algorithm) by calling register_live_tools(mcp) during server initialization in the main entrypoint.
    safe_print("🔧 Registering QuantConnect tools...") register_auth_tools(mcp) register_project_tools(mcp) register_file_tools(mcp) register_backtest_tools(mcp) register_live_tools(mcp) register_optimization_tools(mcp)
  • Alternative registration of live_tools module in the server.py module, called during server setup.
    safe_print("🔧 Registering QuantConnect tools...") register_auth_tools(mcp) register_project_tools(mcp) register_file_tools(mcp) register_backtest_tools(mcp) register_live_tools(mcp) register_optimization_tools(mcp)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taylorwilsdon/quantconnect-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server