Skip to main content
Glama

read_file

Access and retrieve file contents from QuantConnect projects to analyze trading strategies, research data, or implementation code for informed decision-making.

Instructions

Read a specific file from a project or all files if no name provided.

Args: project_id: ID of the project to read files from name: Optional name of specific file to read. If not provided, reads all files.

Returns: Dictionary containing file content(s) or error information

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
project_idYes
nameNo

Implementation Reference

  • The core handler implementation for the 'read_file' MCP tool. This async function handles reading specific files or all files from a QuantConnect project via authenticated API calls to 'files/read'. Includes input validation via type hints, comprehensive error handling, and structured JSON responses. Registered directly via @mcp.tool() decorator.
    @mcp.tool() async def read_file(project_id: int, name: Optional[str] = None) -> Dict[str, Any]: """ Read a specific file from a project or all files if no name provided. Args: project_id: ID of the project to read files from name: Optional name of specific file to read. If not provided, reads all files. Returns: Dictionary containing file content(s) or error information """ auth = get_auth_instance() if auth is None: return { "status": "error", "error": "QuantConnect authentication not configured. Use configure_auth() first.", } try: # Prepare request data request_data: Dict[str, Any] = {"projectId": project_id} if name is not None: request_data["name"] = name # Make API request response = await auth.make_authenticated_request( endpoint="files/read", method="POST", json=request_data ) # Parse response if response.status_code == 200: data = response.json() if data.get("success", False): files = data.get("files", []) # If specific file was requested if name is not None: if files: file_data = files[0] return { "status": "success", "project_id": project_id, "file": file_data, "message": f"Successfully read file '{name}' from project {project_id}", } else: return { "status": "error", "error": f"File '{name}' not found in project {project_id}", } # If all files were requested else: return { "status": "success", "project_id": project_id, "files": files, "total_files": len(files), "message": f"Successfully read {len(files)} files from project {project_id}", } else: # API returned success=false errors = data.get("errors", ["Unknown error"]) return { "status": "error", "error": "File read failed", "details": errors, "project_id": project_id, "file_name": name, } elif response.status_code == 401: return { "status": "error", "error": "Authentication failed. Check your credentials and ensure they haven't expired.", } else: return { "status": "error", "error": f"API request failed with status {response.status_code}", "response_text": ( response.text[:500] if hasattr(response, "text") else "No response text" ), } except Exception as e: return { "status": "error", "error": f"Failed to read file(s): {str(e)}", "project_id": project_id, "file_name": name, }
  • Server initialization calls register_file_tools(mcp), which defines and registers the read_file tool (along with other file tools) using FastMCP's @mcp.tool() decorators.
    register_file_tools(mcp)
  • Entry point script also registers file tools, importing mcp from server.py, providing an alternative invocation path.
    register_file_tools(mcp)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taylorwilsdon/quantconnect-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server