Skip to main content
Glama

QuantConnect MCP Server

perform_pca_analysis

Analyze historical returns using Principal Component Analysis to identify key components of market data. Input symbols, dates, and component count to receive detailed PCA results.

Instructions

Perform Principal Component Analysis on historical returns. Args: symbols: List of symbols to analyze start_date: Start date in YYYY-MM-DD format end_date: End date in YYYY-MM-DD format n_components: Number of components to compute (default: all) instance_name: QuantBook instance name Returns: Dictionary containing PCA results

Input Schema

NameRequiredDescriptionDefault
end_dateYes
instance_nameNodefault
n_componentsNo
start_dateYes
symbolsYes

Input Schema (JSON Schema)

{ "properties": { "end_date": { "title": "End Date", "type": "string" }, "instance_name": { "default": "default", "title": "Instance Name", "type": "string" }, "n_components": { "anyOf": [ { "type": "integer" }, { "type": "null" } ], "default": null, "title": "N Components" }, "start_date": { "title": "Start Date", "type": "string" }, "symbols": { "items": { "type": "string" }, "title": "Symbols", "type": "array" } }, "required": [ "symbols", "start_date", "end_date" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taylorwilsdon/quantconnect-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server