Skip to main content
Glama

read_backtest_chart

Retrieve chart data from backtest results to analyze trading strategy performance, supporting customizable time ranges and data points.

Instructions

Read chart data from a backtest.

Args: project_id: Project ID containing the backtest backtest_id: ID of the backtest to get chart from name: Name of the chart to retrieve (e.g., "Strategy Equity") count: Number of data points to request (default: 100) start: Optional UTC start timestamp in seconds end: Optional UTC end timestamp in seconds

Returns: Dictionary containing chart data or loading status

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
project_idYes
backtest_idYes
nameYes
countNo
startNo
endNo

Implementation Reference

  • The primary handler function for the 'read_backtest_chart' tool. Decorated with @mcp.tool(), it authenticates via QuantConnect API, prepares request parameters, calls the 'backtests/chart/read' endpoint, and returns chart data or loading progress.
    @mcp.tool() async def read_backtest_chart( project_id: int, backtest_id: str, name: str, count: int = 100, start: Optional[int] = None, end: Optional[int] = None, ) -> Dict[str, Any]: """ Read chart data from a backtest. Args: project_id: Project ID containing the backtest backtest_id: ID of the backtest to get chart from name: Name of the chart to retrieve (e.g., "Strategy Equity") count: Number of data points to request (default: 100) start: Optional UTC start timestamp in seconds end: Optional UTC end timestamp in seconds Returns: Dictionary containing chart data or loading status """ auth = get_auth_instance() if auth is None: return { "status": "error", "error": "QuantConnect authentication not configured. Use configure_auth() first.", } try: # Prepare request data request_data = { "projectId": project_id, "backtestId": backtest_id, "name": name, "count": count, } # Add optional timestamp parameters if start is not None: request_data["start"] = start if end is not None: request_data["end"] = end # Make API request response = await auth.make_authenticated_request( endpoint="backtests/chart/read", method="POST", json=request_data ) # Parse response if response.status_code == 200: data = response.json() if data.get("success", False): # Check if chart is still loading if "progress" in data and "status" in data: progress = data.get("progress", 0) status = data.get("status", "loading") return { "status": "loading", "project_id": project_id, "backtest_id": backtest_id, "chart_name": name, "progress": progress, "chart_status": status, "message": f"Chart '{name}' is loading... ({progress * 100:.1f}% complete)", } # Chart is ready elif "chart" in data: chart = data.get("chart") return { "status": "success", "project_id": project_id, "backtest_id": backtest_id, "chart_name": name, "chart": chart, "count": count, "start": start, "end": end, "message": f"Successfully retrieved chart '{name}' from backtest {backtest_id}", } else: return { "status": "error", "error": "Unexpected response format - no chart or progress data found", } else: # API returned success=false errors = data.get("errors", ["Unknown error"]) return { "status": "error", "error": "Failed to read backtest chart", "details": errors, "project_id": project_id, "backtest_id": backtest_id, "chart_name": name, } elif response.status_code == 401: return { "status": "error", "error": "Authentication failed. Check your credentials and ensure they haven't expired.", } else: return { "status": "error", "error": f"API request failed with status {response.status_code}", "response_text": ( response.text[:500] if hasattr(response, "text") else "No response text" ), } except Exception as e: return { "status": "error", "error": f"Failed to read backtest chart: {str(e)}", "project_id": project_id, "backtest_id": backtest_id, "chart_name": name, }
  • Invocation of register_backtest_tools(mcp) which defines and registers the read_backtest_chart tool (via nested @mcp.tool() decorator) with the FastMCP server instance.
    register_backtest_tools(mcp)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taylorwilsdon/quantconnect-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server