Social Media MCP Server
by tayler-id
- social-media-mcp
- memory-bank
# System Patterns: Social Media MCP Server
## System Architecture
The Social Media MCP Server follows a modular, component-based architecture designed for extensibility, reliability, and maintainability. The system is structured around the following architectural patterns:
```mermaid
flowchart TD
Client[Client] -->|Natural Language Request| MCP[MCP Server Interface]
MCP --> Core[Core Orchestrator]
subgraph Components
NLP[NLP Processor]
Conversation[Conversation Manager]
History[History Manager]
Research[Research Engine]
Content[Content Generator]
Format[Platform Formatter]
Post[Posting Service]
Analytics[Analytics Engine]
RateLimit[Rate Limit Manager]
end
Core --> NLP
NLP --> Conversation
Conversation --> Research
Research --> Content
Content --> Format
Format --> Post
Post --> Analytics
Post --> History
History -.->|Checks| NLP
RateLimit -.->|Controls| Research
RateLimit -.->|Controls| Content
RateLimit -.->|Controls| Post
Analytics -.->|Feedback| Content
Analytics -.->|Feedback| Format
subgraph External Services
Twitter[Twitter API]
Mastodon[Mastodon API]
LinkedIn[LinkedIn API]
BraveSearch[Brave Search]
Perplexity[Perplexity]
AIModels[AI Models]
end
Research -->|Uses| BraveSearch
Research -->|Uses| Perplexity
Content -->|Uses| AIModels
Post -->|Posts to| Twitter
Post -->|Posts to| Mastodon
Post -->|Posts to| LinkedIn
Analytics -->|Collects from| Twitter
Analytics -->|Collects from| Mastodon
Analytics -->|Collects from| LinkedIn
```
## Key Design Patterns
### 1. Modular Component Architecture
The system is divided into loosely coupled components that communicate through well-defined interfaces. This allows for:
- Independent development and testing of components
- Easy replacement or upgrade of individual components
- Addition of new components (e.g., new social media platforms)
### 2. Strategy Pattern
Used for implementing different strategies for:
- Content generation (different AI models)
- Platform formatting (platform-specific rules)
- Research methods (different data sources)
```typescript
interface ContentGenerationStrategy {
generateContent(intent: UserIntent, research: ResearchData): Promise<Content>;
}
class AnthropicStrategy implements ContentGenerationStrategy {
async generateContent(intent: UserIntent, research: ResearchData): Promise<Content> {
// Implementation using Anthropic API
}
}
class OpenAIStrategy implements ContentGenerationStrategy {
async generateContent(intent: UserIntent, research: ResearchData): Promise<Content> {
// Implementation using OpenAI API
}
}
```
### 3. Factory Pattern
Used to create appropriate instances of:
- Platform connectors
- Research providers
- Content generators
```typescript
class PlatformConnectorFactory {
static createConnector(platform: SocialPlatform, credentials: Credentials): PlatformConnector {
switch (platform) {
case SocialPlatform.Twitter:
return new TwitterConnector(credentials);
case SocialPlatform.Mastodon:
return new MastodonConnector(credentials);
case SocialPlatform.LinkedIn:
return new LinkedInConnector(credentials);
default:
throw new Error(`Unsupported platform: ${platform}`);
}
}
}
```
### 4. Observer Pattern
Used for:
- Monitoring rate limits
- Tracking API usage
- Collecting analytics data
- Notifying components of state changes
```typescript
class RateLimitMonitor {
private observers: RateLimitObserver[] = [];
addObserver(observer: RateLimitObserver): void {
this.observers.push(observer);
}
notifyApproachingLimit(api: string, remainingCalls: number): void {
this.observers.forEach(observer => observer.onApproachingLimit(api, remainingCalls));
}
}
```
### 5. Command Pattern
Used for:
- Queuing API requests
- Implementing retry logic
- Managing scheduled posts
```typescript
interface ApiCommand {
execute(): Promise<any>;
getRetryCount(): number;
incrementRetryCount(): void;
getPriority(): number;
}
class PostToTwitterCommand implements ApiCommand {
constructor(private content: Content, private credentials: TwitterCredentials) {}
async execute(): Promise<any> {
// Implementation for posting to Twitter
}
// Other methods...
}
```
### 6. Adapter Pattern
Used to provide a unified interface for:
- Different social media APIs
- Various AI model providers
- Research data sources
```typescript
interface SocialMediaAdapter {
post(content: Content): Promise<PostResult>;
getEngagement(postId: string): Promise<EngagementMetrics>;
}
class TwitterAdapter implements SocialMediaAdapter {
// Implementation for Twitter API
}
class MastodonAdapter implements SocialMediaAdapter {
// Implementation for Mastodon API
}
class LinkedInAdapter implements SocialMediaAdapter {
// Implementation for LinkedIn API
}
```
### 7. Repository Pattern
Used for:
- Storing and retrieving analytics data
- Caching research results
- Managing user preferences
```typescript
interface AnalyticsRepository {
savePostMetrics(postId: string, platform: string, metrics: EngagementMetrics): Promise<void>;
getPostMetrics(postId: string, platform: string): Promise<EngagementMetrics>;
getPerformanceByTimeRange(platform: string, startTime: Date, endTime: Date): Promise<PerformanceData[]>;
}
```
## Component Relationships
### Core Orchestrator
- Central component that coordinates the workflow
- Manages the lifecycle of a content request
- Delegates to specialized components
- Handles error recovery and retries
### NLP Processor
- Parses natural language instructions
- Extracts intent, tone, and content requirements
- Identifies research needs
- Provides structured data for the Research Engine
### Research Engine
- Coordinates research across multiple sources
- Uses Brave Search and Perplexity MCPs
- Aggregates and filters research results
- Provides relevant data for content generation
### Content Generator
- Selects appropriate AI models based on content needs
- Manages fallback between models
- Generates platform-appropriate content
- Creates variations for A/B testing
### Platform Formatter
- Applies platform-specific formatting rules
- Handles character limits and content truncation
- Creates thread structures when needed
- Optimizes media attachments
### Posting Service
- Manages authentication with platforms
- Handles the actual posting process
- Implements retry logic for failed posts
- Provides posting status updates
### Rate Limit Manager
- Monitors API usage across all components
- Implements token bucket algorithm for rate limiting
- Manages request queuing and prioritization
- Provides fallback mechanisms
### Conversation Manager
- Manages multi-turn conversations with users
- Generates follow-up questions based on missing context
- Maintains conversation state using a state machine
- Updates user intent based on answers to questions
### History Manager
- Stores and retrieves post history
- Detects similar posts to avoid repetition
- Tracks post performance over time
- Provides insights for content optimization
### Analytics Engine
- Collects engagement metrics from platforms
- Analyzes content performance
- Identifies patterns and trends
- Provides feedback for content optimization
## Technical Decisions
### 1. TypeScript for Type Safety
- Using TypeScript for strong typing and better developer experience
- Enables better code organization and maintainability
- Provides compile-time error checking
### 2. MCP SDK for Server Implementation
- Leveraging the Model Context Protocol SDK for server implementation
- Provides standardized communication with AI assistants
- Enables tool and resource registration
### 3. Multi-model AI Approach
- Using multiple AI models for different aspects of content generation
- Provides fallback options for rate limit handling
- Allows specialized models for specific tasks
### 4. Caching Strategy
- Implementing caching for research results and API responses
- Reduces duplicate API calls
- Improves performance and helps with rate limit management
### 5. Asynchronous Processing
- Using asynchronous processing for non-blocking operations
- Implements request queuing for rate-limited operations
- Provides better user experience during high-load periods
### 6. Structured Logging
- Implementing comprehensive logging throughout the system
- Enables debugging and performance monitoring
- Provides insights for system optimization
### 7. Error Handling Strategy
- Implementing robust error handling with appropriate recovery mechanisms
- Using circuit breaker pattern for external service failures
- Providing clear error messages and recovery options