Social Media MCP Server
by tayler-id
- social-media-mcp
- memory-bank
# Technical Context: Social Media MCP Server
## Technologies Used
### Core Technologies
1. **Node.js**
- Runtime environment for executing JavaScript code server-side
- Provides asynchronous, event-driven architecture suitable for API interactions
- Version: Latest LTS (18.x+)
2. **TypeScript**
- Superset of JavaScript with static typing
- Enhances code quality and maintainability
- Provides better tooling and developer experience
- Version: 5.0+
3. **MCP SDK**
- Model Context Protocol Software Development Kit
- Enables creation of MCP servers that extend AI assistant capabilities
- Provides standardized communication protocol
- Version: Latest available
### API Integrations
1. **Twitter API v2**
- REST API for Twitter/X platform
- Provides endpoints for posting tweets, reading timelines, and retrieving analytics
- Authentication: OAuth 1.0a and OAuth 2.0
2. **Mastodon API**
- REST API for Mastodon instances
- Provides endpoints for posting toots, reading timelines, and retrieving analytics
- Authentication: OAuth 2.0
3. **LinkedIn API**
- REST API for LinkedIn platform
- Provides endpoints for posting shares, company updates, and retrieving analytics
- Authentication: OAuth 2.0
4. **Brave Search API**
- API for performing web searches
- Provides comprehensive search results for research
- Authentication: API Key
5. **Perplexity API**
- API for AI-powered research and information retrieval
- Provides in-depth analysis and structured information
- Authentication: API Key
### AI Services
1. **OpenAI API**
- Provides access to GPT models for content generation
- Capabilities: Text generation, summarization, classification
- Authentication: API Key
2. **Anthropic API**
- Provides access to Claude models for content generation
- Capabilities: Long-form content, nuanced writing
- Authentication: API Key
3. **DeepSeek API**
- Provides access to DeepSeek models for specialized content
- Authentication: API Key
4. **Grok API**
- Provides access to Grok models for conversational content
- Authentication: API Key
5. **HuggingFace API**
- Provides access to various specialized models
- Used for specific tasks like hashtag generation
- Authentication: API Key
### Data Storage
1. **SQLite**
- Lightweight, file-based database
- Used for storing analytics data, caching, and user preferences
- Suitable for development and small-scale deployments
2. **Redis (Optional)**
- In-memory data structure store
- Used for caching, rate limit tracking, and request queuing
- Provides improved performance for high-traffic scenarios
## Development Setup
### Environment Setup
1. **Node.js Environment**
- Node.js (v18+)
- npm or yarn package manager
- TypeScript compiler
2. **Development Tools**
- Visual Studio Code with TypeScript extensions
- ESLint for code quality
- Prettier for code formatting
- Jest for testing
3. **Environment Variables**
- API keys and secrets for all integrated services
- Configuration options for rate limiting and caching
- Development/production mode flags
### Project Structure
```
social-media-mcp/
├── src/
│ ├── index.ts # Entry point
│ ├── config/ # Configuration
│ ├── types/ # TypeScript type definitions
│ ├── core/ # Core orchestration logic
│ ├── nlp/ # Natural language processing
│ ├── conversation/ # Conversation management
│ │ └── manager.ts # Conversation state and questions
│ ├── history/ # Post history management
│ │ └── manager.ts # History storage and retrieval
│ ├── research/ # Research engine
│ │ ├── brave/ # Brave Search integration
│ │ ├── perplexity/ # Perplexity integration
│ │ └── aggregator/ # Research result aggregation
│ ├── content/ # Content generation
│ │ ├── strategies/ # AI model strategies
│ │ ├── formatter/ # Platform-specific formatting
│ │ └── templates/ # Content templates
│ ├── platforms/ # Social media platform integrations
│ │ ├── twitter/ # Twitter API integration
│ │ ├── mastodon/ # Mastodon API integration
│ │ └── linkedin/ # LinkedIn API integration
│ ├── analytics/ # Analytics engine
│ ├── rate-limit/ # Rate limit management
│ └── utils/ # Utility functions
├── tests/ # Test files
├── build/ # Compiled JavaScript
├── data/ # Data storage
│ └── history/ # Post history storage
├── .env # Environment variables (gitignored)
├── package.json # Dependencies and scripts
├── tsconfig.json # TypeScript configuration
└── README.md # Project documentation
```
### Build and Run Process
1. **Development**
```bash
# Install dependencies
npm install
# Run in development mode with hot reloading
npm run dev
```
2. **Testing**
```bash
# Run unit tests
npm test
# Run integration tests
npm run test:integration
```
3. **Production Build**
```bash
# Build for production
npm run build
# Start production server
npm start
```
## Technical Constraints
### API Rate Limits
1. **Twitter API**
- Tweet creation: 200 requests per 15-minute window
- Timeline retrieval: 100 requests per 15-minute window
- User-based rate limits that vary by account type
2. **Mastodon API**
- Instance-specific rate limits
- Typically 300 requests per 5-minute window
- Varies by Mastodon instance
3. **LinkedIn API**
- Share creation: 100 requests per day per user
- Company updates: 50 requests per day per company
- Rate limits vary by API endpoint and application type
4. **AI Service APIs**
- OpenAI: Varies by model and account tier
- Anthropic: Requests per minute limits
- Other services: Various rate limit structures
### Performance Considerations
1. **Response Time**
- Target maximum response time: 5 seconds for initial processing
- Research and content generation may take longer
- Progress updates for longer operations
2. **Concurrency**
- Support for multiple concurrent requests
- Graceful handling of high load situations
- Request queuing for rate-limited operations
3. **Resource Usage**
- Memory usage optimization for long-running processes
- Efficient handling of large response payloads
- Caching to reduce redundant API calls
### Security Requirements
1. **API Credential Security**
- Secure storage of API keys and tokens
- No hardcoded credentials in source code
- Environment variable-based configuration
2. **Data Protection**
- Minimal storage of user data
- Encryption for sensitive information
- Compliance with platform terms of service
3. **Error Handling**
- Graceful handling of API errors
- No exposure of sensitive information in error messages
- Comprehensive logging for debugging
## Dependencies
### Core Dependencies
1. **@modelcontextprotocol/sdk**
- MCP SDK for server implementation
- Provides communication protocol with AI assistants
2. **axios**
- HTTP client for API requests
- Used for all external API interactions
3. **twitter-api-v2**
- Twitter API client library
- Simplifies Twitter API interactions
4. **masto**
- Mastodon API client library
- Simplifies Mastodon API interactions
5. **linkedin-api-client**
- LinkedIn API client library
- Simplifies LinkedIn API interactions
6. **openai**
- OpenAI API client library
- Used for content generation
7. **@anthropic-ai/sdk**
- Anthropic API client library
- Used for content generation
### Utility Dependencies
1. **dotenv**
- Environment variable management
- Loads variables from .env file
2. **winston**
- Logging library
- Provides structured logging capabilities
3. **date-fns**
- Date manipulation library
- Used for scheduling and time-based operations
4. **sqlite3**
- SQLite database driver
- Used for data storage
5. **ioredis** (Optional)
- Redis client
- Used for caching and rate limit tracking
### Development Dependencies
1. **typescript**
- TypeScript compiler and language services
2. **ts-node**
- TypeScript execution environment
- Used for development server
3. **nodemon**
- File watcher for development
- Automatically restarts server on changes
4. **jest**
- Testing framework
- Used for unit and integration tests
5. **eslint**
- Code linting
- Ensures code quality and consistency
6. **prettier**
- Code formatting
- Ensures consistent code style