Skip to main content
Glama

MCP-DBLP

MCP 兼容 许可证:MIT Python 版本

模型上下文协议 (MCP) 服务器,提供对大型语言模型的 DBLP 计算机科学书目数据库的访问。


概述

MCP-DBLP 通过模型上下文协议将 DBLP(数字书目和图书馆项目)API 与 LLM 集成,使 AI 模型能够:

  • 从 DBLP 数据库中搜索和检索学术出版物

  • 处理引文并生成 BibTeX 条目

  • 对出版物标题和作者姓名进行模糊匹配

  • 提取并格式化书目信息

  • 处理文档中嵌入的引用

  • 直接导出 BibTeX,绕过 LLM 处理,实现最高准确度

特征

  • 具有布尔查询的综合搜索功能

  • 模糊标题和作者姓名匹配

  • 直接从 DBLP 检索 BibTeX 条目

  • 按年份和地点筛选出版物

  • 出版数据的统计分析

  • 直接 BibTeX 导出功能可绕过 LLM 处理,实现最高准确度

可用工具

工具名称

描述

search

使用布尔查询在 DBLP 中搜索出版物

fuzzy_title_search

使用模糊标题匹配搜索出版物

get_author_publications

检索特定作者的出版物

get_venue_info

获取有关出版地点的详细信息

calculate_statistics

根据出版结果生成统计数据

export_bibtex

将 BibTeX 条目直接从 DBLP 导出到文件

反馈

通过此表格向作者提供反馈。

系统要求


安装

  1. 安装与 MCP 兼容的客户端(例如, Claude Desktop 应用程序

  2. 安装 MCP-DBLP:

    git clone https://github.com/username/mcp-dblp.git cd mcp-dblp uv venv source .venv/bin/activate uv pip install -e .
  3. 创建配置文件:

    对于 macOS/Linux:

~/Library/Application/Support/Claude/claude_desktop_config.json

对于 Windows:

%APPDATA%\Claude\claude_desktop_config.json

添加以下内容:

{ "mcpServers": { "mcp-dblp": { "command": "uv", "args": [ "--directory", "/absolute/path/to/mcp-dblp/", "run", "mcp-dblp", "--exportdir", "/absolute/path/to/bibtex/export/folder/" ] } } }

Windows: C:\\absolute\\path\\to\\mcp-dblp


迅速的

其中包含一个说明提示,应与包含引用的文本一起使用。在 Claude 桌面版中,可通过电源插头图标访问说明提示。

工具详细信息

搜索

使用布尔查询字符串在 DBLP 中搜索出版物。

参数:

  • query (字符串,必需):可能包含布尔运算符“and”和“or”(不区分大小写)的查询字符串

  • max_results (数字,可选):返回的最大出版物数量。默认值为 10

  • year_from (数字,可选):出版年份的下限

  • year_to (数字,可选):出版年份的上限

  • venue_filter (字符串,可选):出版场所不区分大小写的子字符串过滤器(例如,“iclr”)

  • include_bibtex (布尔值,可选):是否在结果中包含 BibTeX 条目。默认值为 false。

模糊标题搜索

在 DBLP 中搜索具有模糊标题匹配的出版物。

参数:

  • title (字符串,必需):出版物的完整或部分标题(不区分大小写)

  • similarity_threshold (数字,必需):0 到 1 之间的浮点数,其中 1.0 表示完全匹配

  • max_results (数字,可选):返回的最大出版物数量。默认值为 10

  • year_from (数字,可选):出版年份的下限

  • year_to (数字,可选):出版年份的上限

  • venue_filter (字符串,可选):不区分大小写的出版场所子字符串过滤器

  • include_bibtex (布尔值,可选):是否在结果中包含 BibTeX 条目。默认值为 false。

获取作者出版物

使用模糊匹配检索特定作者的出版物详细信息。

参数:

  • author_name (字符串,必需):完整或部分作者姓名(不区分大小写)

  • similarity_threshold (数字,必需):0 到 1 之间的浮点数,其中 1.0 表示完全匹配

  • max_results (数字,可选):返回的最大出版物数量。默认值为 20

  • include_bibtex (布尔值,可选):是否在结果中包含 BibTeX 条目。默认值为 false。

获取场地信息

检索有关出版地点的详细信息。

参数:

  • venue_name (字符串,必需):场地名称或缩写(例如“ICLR”或全名)

计算统计数据

根据出版结果列表计算统计数据。

参数:

  • results (数组,必需):出版物对象数组,每个对象至少包含“标题”、“作者”、“地点”和“年份”

导出_bibtex

将 BibTeX 条目直接从 DBLP 导出到本地文件。

参数:

  • links

    (字符串,必需):包含一个或多个关键链接的 HTML 字符串

    • 例如: "<a href=https://dblp.org/rec/journals/example.bib>Smith2023</a>"

行为:

  • 对于每个链接,BibTeX 条目直接从 DBLP 获取

  • 仅引用关键字被替换为链接文本中指定的关键字

  • 所有条目都保存到由--exportdir指定的文件夹中带有时间戳的 .bib 文件中

  • 返回已保存文件的完整路径

重要提示: BibTeX 条目直接从 DBLP 获取,并设有 10 秒超时保护,LLM 不会对其进行处理、修改或幻化。这确保了书目数据的最大准确性和可信度。仅按规定修改引文键。如果请求超时,输出中会包含错误消息。


例子

输入文本:

我们的探索重点关注局部和全局情境中的两类解释问题:溯因解释和对比解释(Marques-Silva,2023)。溯因解释(Ignatiev、Narodytska 和 Marques-Silva,2019)对应于素蕴涵解释(Shih、Choi 和 Darwiche,2018)和充分理由解释(Darwiche 和 Ji,2022),阐明了具体的决策实例;而对比解释(Miller,2019;Ignatiev 等人,2020)对应于必要理由解释(Darwiche 和 Ji,2022),明确了未选择替代方案背后的原因。相反,全局解释(Ribeiro、Singh 和 Guestrin 2016;Ignatiev、Narodytska 和 Marques-Silva 2019)旨在揭示模型在不同输入下的决策模式。

输出文本:

我们的探索重点关注局部和全局情境中的两类解释问题:溯因解释和对比解释 \cite{MarquesSilvaI23}。溯因解释 \cite{IgnatievNM19}(对应于素蕴涵解释 \cite{ShihCD18} 和充分理由解释 \cite{DarwicheJ22})阐明了具体的决策实例;而对比解释 \cite{Miller19}; \cite{IgnatievNA020}(对应于必要理由解释 \cite{DarwicheJ22})则阐明了未选择替代方案背后的原因。相反,全局解释 \cite{Ribeiro0G16}; \cite{IgnatievNM19} 旨在揭示模型在不同输入条件下的决策模式。

输出 Bibtex

所有参考文献已成功导出至 BibTeX 文件,地址为:/absolute/path/to/bibtex/20250305_231431.bib

@article{MarquesSilvaI23, author = {Jo{\~{a}}o Marques{-}Silva and Alexey Ignatiev}, title = {No silver bullet: interpretable {ML} models must be explained}, journal = {Frontiers Artif. Intell.}, volume = {6}, year = {2023}, url = {https://doi.org/10.3389/frai.2023.1128212}, doi = {10.3389/FRAI.2023.1128212}, timestamp = {Tue, 07 May 2024 20:23:47 +0200}, biburl = {https://dblp.org/rec/journals/frai/MarquesSilvaI23.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{IgnatievNM19, author = {Alexey Ignatiev and Nina Narodytska and Jo{\~{a}}o Marques{-}Silva}, title = {Abduction-Based Explanations for Machine Learning Models}, booktitle = {The Thirty-Third {AAAI} Conference on Artificial Intelligence, {AAAI} 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, {IAAI} 2019, The Ninth {AAAI} Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019}, pages = {1511--1519}, publisher = {{AAAI} Press}, year = {2019}, url = {https://doi.org/10.1609/aaai.v33i01.33011511}, doi = {10.1609/AAAI.V33I01.33011511}, timestamp = {Mon, 04 Sep 2023 12:29:24 +0200}, biburl = {https://dblp.org/rec/conf/aaai/IgnatievNM19.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{ShihCD18, author = {Andy Shih and Arthur Choi and Adnan Darwiche}, editor = {J{\'{e}}r{\^{o}}me Lang}, title = {A Symbolic Approach to Explaining Bayesian Network Classifiers}, booktitle = {Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, {IJCAI} 2018, July 13-19, 2018, Stockholm, Sweden}, pages = {5103--5111}, publisher = {ijcai.org}, year = {2018}, url = {https://doi.org/10.24963/ijcai.2018/708}, doi = {10.24963/IJCAI.2018/708}, timestamp = {Tue, 20 Aug 2019 16:19:08 +0200}, biburl = {https://dblp.org/rec/conf/ijcai/ShihCD18.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{DarwicheJ22, author = {Adnan Darwiche and Chunxi Ji}, title = {On the Computation of Necessary and Sufficient Explanations}, booktitle = {Thirty-Sixth {AAAI} Conference on Artificial Intelligence, {AAAI} 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, {IAAI} 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2022 Virtual Event, February 22 - March 1, 2022}, pages = {5582--5591}, publisher = {{AAAI} Press}, year = {2022}, url = {https://doi.org/10.1609/aaai.v36i5.20498}, doi = {10.1609/AAAI.V36I5.20498}, timestamp = {Mon, 04 Sep 2023 16:50:24 +0200}, biburl = {https://dblp.org/rec/conf/aaai/DarwicheJ22.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @article{Miller19, author = {Tim Miller}, title = {Explanation in artificial intelligence: Insights from the social sciences}, journal = {Artif. Intell.}, volume = {267}, pages = {1--38}, year = {2019}, url = {https://doi.org/10.1016/j.artint.2018.07.007}, doi = {10.1016/J.ARTINT.2018.07.007}, timestamp = {Thu, 25 May 2023 12:52:41 +0200}, biburl = {https://dblp.org/rec/journals/ai/Miller19.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{IgnatievNA020, author = {Alexey Ignatiev and Nina Narodytska and Nicholas Asher and Jo{\~{a}}o Marques{-}Silva}, editor = {Matteo Baldoni and Stefania Bandini}, title = {From Contrastive to Abductive Explanations and Back Again}, booktitle = {AIxIA 2020 - Advances in Artificial Intelligence - XIXth International Conference of the Italian Association for Artificial Intelligence, Virtual Event, November 25-27, 2020, Revised Selected Papers}, series = {Lecture Notes in Computer Science}, volume = {12414}, pages = {335--355}, publisher = {Springer}, year = {2020}, url = {https://doi.org/10.1007/978-3-030-77091-4\_21}, doi = {10.1007/978-3-030-77091-4\_21}, timestamp = {Tue, 15 Jun 2021 17:23:54 +0200}, biburl = {https://dblp.org/rec/conf/aiia/IgnatievNA020.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{Ribeiro0G16, author = {Marco T{\'{u}}lio Ribeiro and Sameer Singh and Carlos Guestrin}, editor = {Balaji Krishnapuram and Mohak Shah and Alexander J. Smola and Charu C. Aggarwal and Dou Shen and Rajeev Rastogi}, title = {"Why Should {I} Trust You?": Explaining the Predictions of Any Classifier}, booktitle = {Proceedings of the 22nd {ACM} {SIGKDD} International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016}, pages = {1135--1144}, publisher = {{ACM}}, year = {2016}, url = {https://doi.org/10.1145/2939672.2939778}, doi = {10.1145/2939672.2939778}, timestamp = {Fri, 25 Dec 2020 01:14:16 +0100}, biburl = {https://dblp.org/rec/conf/kdd/Ribeiro0G16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

免责声明

此 MCP-DBLP 尚处于原型阶段,应谨慎使用。鼓励用户进行实验,但在关键环境中使用需自行承担风险。


执照

该项目根据 MIT 许可证获得许可 - 有关详细信息,请参阅LICENSE文件。


Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    A Model Context Protocol server that enables Large Language Models to access and interact with database connections, including viewing schemas and performing CRUD operations on connected databases.
    Last updated -
    • Apple
  • A
    security
    A
    license
    A
    quality
    Model Context Protocol server for YDB databases that enables AI-powered database operations and natural language interactions with YDB instances from any LLM that supports MCP.
    Last updated -
    5
    24
    Apache 2.0
    • Linux
    • Apple
  • -
    security
    F
    license
    -
    quality
    A comprehensive Model Context Protocol server that provides AI assistants with direct access to Semantic Scholar's academic database, enabling advanced paper discovery, citation analysis, author research, and AI-powered recommendations.
    Last updated -
    4
    • Apple
    • Linux
  • A
    security
    A
    license
    A
    quality
    A comprehensive Model Context Protocol server that enables advanced PubMed literature search, citation formatting, and research analysis through natural language interactions.
    Last updated -
    12
    7
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/szeider/mcp-dblp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server