Skip to main content
Glama

mcp-omnisearch

index.ts7.04 kB
import { http_json } from '../../../common/http.js'; import { ErrorType, ProcessingProvider, ProcessingResult, ProviderError, } from '../../../common/types.js'; import { is_valid_url, retry_with_backoff, validate_api_key, } from '../../../common/utils.js'; import { config } from '../../../config/env.js'; interface FirecrawlExtractResponse { success: boolean; id: string; error?: string; } interface FirecrawlExtractStatusResponse { success: boolean; id: string; status: string; data?: any; error?: string; } export class FirecrawlExtractProvider implements ProcessingProvider { name = 'firecrawl_extract'; description = 'Structured data extraction with AI using natural language prompts via Firecrawl. Extracts specific information from web pages based on custom extraction instructions. Best for targeted data collection, information extraction, and converting unstructured web content into structured data.'; async process_content( url: string | string[], extract_depth: 'basic' | 'advanced' = 'basic', ): Promise<ProcessingResult> { // Extract works with a single URL at a time const extract_url = Array.isArray(url) ? url[0] : url; // Validate URL if (!is_valid_url(extract_url)) { throw new ProviderError( ErrorType.INVALID_INPUT, `Invalid URL provided: ${extract_url}`, this.name, ); } const extract_request = async () => { const api_key = validate_api_key( config.processing.firecrawl_extract.api_key, this.name, ); try { // Define extraction instructions based on extract_depth const extraction_prompt = extract_depth === 'advanced' ? 'Extract all relevant information from this page including: title, author, date published, main content, categories or tags, related links, and any structured data like product information, pricing, or specifications. Format the data in a well-structured way.' : 'Extract the main content, title, and author from this page. Summarize the key information.'; // Start the extraction const extract_data = await http_json<FirecrawlExtractResponse>( this.name, config.processing.firecrawl_extract.base_url, { method: 'POST', headers: { Authorization: `Bearer ${api_key}`, 'Content-Type': 'application/json', }, body: JSON.stringify({ urls: [extract_url], prompt: extraction_prompt, showSources: true, scrapeOptions: { formats: ['markdown'], onlyMainContent: true, waitFor: extract_depth === 'advanced' ? 5000 : 2000, }, }), signal: AbortSignal.timeout( config.processing.firecrawl_extract.timeout, ), }, ); // Check if there was an error in the response if (!extract_data.success || extract_data.error) { throw new ProviderError( ErrorType.PROVIDER_ERROR, `Error starting extraction: ${extract_data.error || 'Unknown error'}`, this.name, ); } // For extractions, we always need to poll for results const extract_id = extract_data.id; let status_data: FirecrawlExtractStatusResponse | null = null; let attempts = 0; const max_attempts = 15; // More attempts for extraction as it can take longer // Poll for results while (attempts < max_attempts) { attempts++; await new Promise((resolve) => setTimeout(resolve, 3000)); // Wait 3 seconds between polls let status_result: FirecrawlExtractStatusResponse; try { status_result = await http_json<FirecrawlExtractStatusResponse>( this.name, `${config.processing.firecrawl_extract.base_url}/${extract_id}`, { method: 'GET', headers: { Authorization: `Bearer ${api_key}` }, signal: AbortSignal.timeout(30000), }, ); } catch { continue; // skip this poll attempt on transient HTTP errors } if (!status_result.success) { throw new ProviderError( ErrorType.PROVIDER_ERROR, `Error checking extraction status: ${status_result.error || 'Unknown error'}`, this.name, ); } if ( status_result.status === 'completed' && status_result.data ) { status_data = status_result; break; } else if (status_result.status === 'error') { throw new ProviderError( ErrorType.PROVIDER_ERROR, `Error extracting data: ${status_result.error || 'Unknown error'}`, this.name, ); } // If still processing, continue polling } // If we've reached max attempts without completion if (!status_data || !status_data.data) { throw new ProviderError( ErrorType.PROVIDER_ERROR, 'No data extracted from URL', this.name, ); } // Format the extracted data as markdown let formatted_content = `# Extracted Data from ${extract_url}\n\n`; // Add each extracted field for (const [key, value] of Object.entries(status_data.data)) { if (typeof value === 'string') { formatted_content += `## ${key.charAt(0).toUpperCase() + key.slice(1)}\n\n${value}\n\n`; } else if (Array.isArray(value)) { formatted_content += `## ${key.charAt(0).toUpperCase() + key.slice(1)}\n\n`; value.forEach((item, index) => { if (typeof item === 'object') { formatted_content += `### Item ${index + 1}\n\n`; for (const [itemKey, itemValue] of Object.entries( item, )) { formatted_content += `- **${itemKey}**: ${itemValue}\n`; } formatted_content += '\n'; } else { formatted_content += `- ${item}\n`; } }); formatted_content += '\n'; } else if (typeof value === 'object' && value !== null) { formatted_content += `## ${key.charAt(0).toUpperCase() + key.slice(1)}\n\n`; for (const [subKey, subValue] of Object.entries(value)) { formatted_content += `- **${subKey}**: ${subValue}\n`; } formatted_content += '\n'; } } // Create a single raw_content entry const raw_contents = [ { url: extract_url, content: formatted_content, }, ]; // Get title if available const title = status_data.data.title || `Extracted Data from ${extract_url}`; // Count words in the formatted content const word_count = formatted_content .split(/\s+/) .filter(Boolean).length; return { content: formatted_content, raw_contents, metadata: { title, word_count, urls_processed: 1, successful_extractions: 1, extract_depth, }, source_provider: this.name, }; } catch (error) { if (error instanceof ProviderError) { throw error; } throw new ProviderError( ErrorType.API_ERROR, `Failed to extract data: ${ error instanceof Error ? error.message : 'Unknown error' }`, this.name, ); } }; return retry_with_backoff(extract_request); } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/spences10/mcp-omnisearch'

If you have feedback or need assistance with the MCP directory API, please join our Discord server