Skip to main content
Glama

xcomet_detect_errors

Detect and categorize translation errors by severity (minor, major, critical) to identify issues in translated text compared to source and optional reference translations.

Instructions

Detect and categorize errors in a translation.

This tool focuses on error detection, providing detailed information about translation errors with their severity levels and positions.

Args:

  • source (string): Original source text

  • translation (string): Translated text to analyze

  • reference (string, optional): Reference translation

  • min_severity ('minor' | 'major' | 'critical'): Minimum severity to report (default: 'minor')

  • response_format ('json' | 'markdown'): Output format (default: 'json')

Returns: { "total_errors": number, "errors_by_severity": { "minor": number, "major": number, "critical": number }, "errors": [ { "text": string, "start": number, "end": number, "severity": "minor" | "major" | "critical", "suggestion": string | null } ] }

Examples:

  • Find critical errors before publication

  • Identify areas needing post-editing

  • Quality gate for MT output

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
sourceYesOriginal source text
translationYesTranslated text to analyze
referenceNoOptional reference translation
min_severityNoMinimum severity level to report (minor, major, critical)minor
response_formatNoOutput formatjson
use_gpuNoUse GPU for inference (faster if available). Default: false (CPU only)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shuji-bonji/xcomet-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server