Skip to main content
Glama

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault
PORTNoHTTP server port (when TRANSPORT=http)3000
TRANSPORTNoTransport mode: stdio or httpstdio
XCOMET_DEBUGNoEnable verbose debug logging (v0.3.1+)false
XCOMET_MODELNoxCOMET model to use (e.g., Unbabel/XCOMET-XL, Unbabel/XCOMET-XXL, or Unbabel/wmt22-comet-da)Unbabel/XCOMET-XL
XCOMET_PRELOADNoPre-load model at startup (v0.3.1+). Enabling this makes all requests fast (~500ms), including the first one.false
XCOMET_PYTHON_PATHNoPython executable path. If not set, the server automatically detects a Python environment with unbabel-comet installed.

Capabilities

Features and capabilities supported by this server

CapabilityDetails
tools
{
  "listChanged": true
}

Tools

Functions exposed to the LLM to take actions

NameDescription
xcomet_evaluate

Evaluate the quality of a translation using xCOMET model.

This tool analyzes a source text and its translation, providing:

  • A quality score between 0 and 1 (higher is better)

  • Detected error spans with severity levels (minor/major/critical)

  • A human-readable quality summary

Args:

  • source (string): Original source text to translate from

  • translation (string): Translated text to evaluate

  • reference (string, optional): Reference translation for comparison

  • source_lang (string, optional): Source language code (ISO 639-1)

  • target_lang (string, optional): Target language code (ISO 639-1)

  • response_format ('json' | 'markdown'): Output format (default: 'json')

Returns: For JSON format: { "score": number, // Quality score 0-1 "errors": [ // Detected errors { "text": string, "start": number, "end": number, "severity": "minor" | "major" | "critical" } ], "summary": string // Human-readable summary }

Examples:

  • Evaluate EN→JA translation quality

  • Check if MT output needs post-editing

  • Compare translation against reference

xcomet_detect_errors

Detect and categorize errors in a translation.

This tool focuses on error detection, providing detailed information about translation errors with their severity levels and positions.

Args:

  • source (string): Original source text

  • translation (string): Translated text to analyze

  • reference (string, optional): Reference translation

  • min_severity ('minor' | 'major' | 'critical'): Minimum severity to report (default: 'minor')

  • response_format ('json' | 'markdown'): Output format (default: 'json')

Returns: { "total_errors": number, "errors_by_severity": { "minor": number, "major": number, "critical": number }, "errors": [ { "text": string, "start": number, "end": number, "severity": "minor" | "major" | "critical", "suggestion": string | null } ] }

Examples:

  • Find critical errors before publication

  • Identify areas needing post-editing

  • Quality gate for MT output

xcomet_batch_evaluate

Evaluate multiple translation pairs in a batch.

This tool processes multiple source-translation pairs and provides aggregate statistics along with individual results.

Args:

  • pairs (array): Array of translation pairs, each with:

    • source (string): Original source text

    • translation (string): Translated text

    • reference (string, optional): Reference translation

  • source_lang (string, optional): Source language code

  • target_lang (string, optional): Target language code

  • response_format ('json' | 'markdown'): Output format (default: 'json')

Returns: { "average_score": number, "total_pairs": number, "results": [ { "index": number, "score": number, "error_count": number, "has_critical_errors": boolean } ], "summary": string }

Examples:

  • Evaluate entire translated document

  • Compare MT system quality across test set

  • Identify segments needing attention

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shuji-bonji/xcomet-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server