Skip to main content
Glama
langchain.py1.28 kB
from typing import Literal from selfmemory.configs.embeddings.base import BaseEmbedderConfig from selfmemory.embeddings.base import EmbeddingBase try: from langchain.embeddings.base import Embeddings except ImportError as err: raise ImportError( "langchain is not installed. Please install it using `pip install langchain`" ) from err class LangchainEmbedding(EmbeddingBase): def __init__(self, config: BaseEmbedderConfig | None = None): super().__init__(config) if self.config.model is None: raise ValueError("`model` parameter is required") if not isinstance(self.config.model, Embeddings): raise ValueError("`model` must be an instance of Embeddings") self.langchain_model = self.config.model def embed( self, text, memory_action: Literal["add", "search", "update"] | None = None ): """ Get the embedding for the given text using Langchain. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ return self.langchain_model.embed_query(text)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shrijayan/SelfMemory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server