Skip to main content
Glama
configs.py1.15 kB
from dataclasses import dataclass class BaseEmbedderConfig: """ Base configuration class for all embedding providers. This matches BaseEmbedderConfig pattern. """ def __init__( self, model: str | None = None, api_key: str | None = None, embedding_dims: int | None = None, # Ollama specific ollama_base_url: str | None = None, # Future providers can add their specific params here **kwargs, ): self.model = model self.api_key = api_key self.embedding_dims = embedding_dims # Ollama specific self.ollama_base_url = ollama_base_url or "http://localhost:11434" # Store any additional kwargs for future extensibility for key, value in kwargs.items(): setattr(self, key, value) # Keep the dataclass version for backward compatibility if needed @dataclass class OllamaEmbedderConfig(BaseEmbedderConfig): """Configuration for Ollama embedding provider.""" model: str = "nomic-embed-text" embedding_dims: int | None = None ollama_base_url: str = "http://localhost:11434"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shrijayan/SelfMemory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server