Skip to main content
Glama
huggingface.py1.76 kB
import logging from typing import Literal from openai import OpenAI from sentence_transformers import SentenceTransformer from selfmemory.configs.embeddings.base import BaseEmbedderConfig from selfmemory.embeddings.base import EmbeddingBase logging.getLogger("transformers").setLevel(logging.WARNING) logging.getLogger("sentence_transformers").setLevel(logging.WARNING) logging.getLogger("huggingface_hub").setLevel(logging.WARNING) class HuggingFaceEmbedding(EmbeddingBase): def __init__(self, config: BaseEmbedderConfig | None = None): super().__init__(config) if config.huggingface_base_url: self.client = OpenAI(base_url=config.huggingface_base_url) else: self.config.model = self.config.model or "multi-qa-MiniLM-L6-cos-v1" self.model = SentenceTransformer( self.config.model, **self.config.model_kwargs ) self.config.embedding_dims = ( self.config.embedding_dims or self.model.get_sentence_embedding_dimension() ) def embed( self, text, memory_action: Literal["add", "search", "update"] | None = None ): """ Get the embedding for the given text using Hugging Face. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ if self.config.huggingface_base_url: return ( self.client.embeddings.create(input=text, model="tei").data[0].embedding ) return self.model.encode(text, convert_to_numpy=True).tolist()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shrijayan/SelfMemory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server