Skip to main content
Glama

data_max_horizontal

Calculate maximum values across columns for each row in your dataset using this preprocessing tool. Ideal for data aggregation and transformation tasks, ensuring efficient row-wise analysis.

Instructions

Maximum values across columns for each row

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
input_data_file_pathNoPath to the input data file

Implementation Reference

  • The main handler function that executes the 'data_max_horizontal' tool logic: loads data, computes max across columns per row, returns JSON.
    async def handle_data_max_horizontal( arguments: dict[str, Any], ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: data_max_input = DataMaxInputSchema.from_args(arguments) try: max_horizontal_df = data_max_input.df.max_horizontal() # Convert the DataFrame to a dictionary format max_horizontal_dict = { "description": "Maximum values across columns for each row", "max_values": {str(i): str(val) if val is not None else None for i, val in enumerate(max_horizontal_df)}, } return [ types.TextContent( type="text", text=json.dumps(max_horizontal_dict), ) ] except Exception as e: logger.error(f"Error calculating max: {e}") return [ types.TextContent( type="text", text=json.dumps( { "error": "Failed to calculate max values.", "message": str(e), } ), ) ]
  • Pydantic schema for input validation: requires input_data_file_path, loads Dataframe.
    class DataMaxInputSchema(Data): model_config = ConfigDict( validate_assignment=True, frozen=True, extra="forbid", arbitrary_types_allowed=True, ) @staticmethod def input_schema() -> dict: return { "type": "object", "properties": { "input_data_file_path": { "type": "string", "description": "Path to the input data file", }, }, } @staticmethod def from_schema(input_data_file_path: str) -> "DataMaxInputSchema": data = Data.from_file(input_data_file_path) return DataMaxInputSchema(df=data.df) @staticmethod def from_args(arguments: dict[str, Any]) -> "DataMaxInputSchema": input_data_file_path = arguments["input_data_file_path"] return DataMaxInputSchema.from_schema(input_data_file_path=input_data_file_path)
  • Tool registration in MCPServerDataWrangler.tools(): defines name, description, and inputSchema.
    types.Tool( name=MCPServerDataWrangler.data_max_horizontal.value[0], description=MCPServerDataWrangler.data_max_horizontal.value[1], inputSchema=DataMaxInputSchema.input_schema(), ),
  • Handler mapping in MCPServerDataWrangler.tool_to_handler(): maps tool name to handle_data_max_horizontal.
    MCPServerDataWrangler.data_max.value[0]: handle_data_max, MCPServerDataWrangler.data_max_horizontal.value[0]: handle_data_max_horizontal, MCPServerDataWrangler.data_min.value[0]: handle_data_min,
  • Enum definition in MCPServerDataWrangler providing the tool name and description.
    data_max_horizontal = ("data_max_horizontal", "Maximum values across columns for each row")
Install Server

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shibuiwilliam/mcp-server-data-wrangler'

If you have feedback or need assistance with the MCP directory API, please join our Discord server