Skip to main content
Glama

MCP Data Wrangler

test_data_shape.py1.66 kB
import json import os import tempfile from datetime import datetime from typing import Any import polars as pl import pytest from mcp_server_data_wrangler.tools import handle_data_shape from mcp_server_data_wrangler.tools.model import SupportedFileType @pytest.mark.asyncio @pytest.mark.usefixtures("scope_function") @pytest.mark.parametrize( ("extension",), [ (SupportedFileType.csv.value[1],), (SupportedFileType.tsv.value[1],), (SupportedFileType.parquet.value[1],), ], ) async def test_handle_data_shape( mocker: Any, scope_function: Any, extension: str, ) -> None: data = [ {"a": i, "b": j / 10, "c": k, "d": datetime.now()} for i, j, k in zip( range(10), range(-10, 10, 2), ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"], ) ] df = pl.DataFrame(data) want = { "rows": df.shape[0], "cols": df.shape[1], } with tempfile.NamedTemporaryFile(delete=False, suffix=extension) as tmp_file: if extension == SupportedFileType.csv.value[1]: df.write_csv(tmp_file.name) elif extension == SupportedFileType.tsv.value[1]: df.write_csv(tmp_file.name, separator="\t") elif extension == SupportedFileType.parquet.value[1]: df.write_parquet(tmp_file.name) tmp_file_path = tmp_file.name arguments = {"input_data_file_path": tmp_file_path} got = await handle_data_shape(arguments=arguments) text = json.loads(got[0].text) assert text["rows"] == want["rows"] assert text["cols"] == want["cols"] os.unlink(tmp_file_path)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shibuiwilliam/mcp-server-data-wrangler'

If you have feedback or need assistance with the MCP directory API, please join our Discord server