Provides AI-powered search and documentation tools using Google's Gemini API, enabling real-time web search queries, technical documentation analysis, code snippet retrieval, and technology comparisons with search grounding.
Integrates with Google Cloud's Vertex AI to provide AI-powered search and documentation tools, including web search grounding, technical explanations, code analysis, and architecture pattern recommendations.
Google AI Search MCP
This project implements a Model Context Protocol (MCP) server that provides a comprehensive suite of Google AI-powered search and documentation tools specifically designed to help AI coders overcome LLM knowledge gaps and information limitations.
Features
Provides access to Google AI models (Vertex AI and Gemini API) via specialized MCP tools.
Focuses on real-time information retrieval and documentation-based analysis.
Supports web search grounding for current information that LLMs lack.
Configurable model ID, temperature, streaming behavior, max output tokens, and retry settings via environment variables.
Uses streaming API by default for potentially better responsiveness.
Includes basic retry logic for transient API errors.
Minimal safety filters applied (
BLOCK_NONE) to reduce potential blocking (use with caution).
Tools Provided
Core Search & Documentation Tools
answer_query_websearch: Developer-focused natural language queries with automatic technical detection, enhanced search methodology, and comprehensive code formatting using Google AI with real-time search results.explain_topic_with_docs: Streamlined technical explanations with improved debugging scenarios, synthesizing information from official documentation with reduced verbosity and enhanced troubleshooting guidance.get_doc_snippets: Enhanced code snippet retrieval with progressive complexity examples, advanced search patterns, version-specific targeting, and comprehensive context for technical queries from official documentation.generate_project_guidelines: Generates comprehensive structured project guidelines documents based on specified technologies, using web search for current best practices and industry standards.
Advanced Analysis Tools
code_analysis_with_docs: Evidence-based code analysis with standardized citations, severity categorization, and actionable recommendations by comparing code against official documentation best practices.technical_comparison: Enhanced technology comparison with quantitative benchmarks, performance metrics, market adoption statistics, and detailed evidence-based analysis across multiple criteria.architecture_pattern_recommendation: Comprehensive architecture guidance with performance metrics, quantitative benefits, detailed implementation roadmaps, and evidence-based pattern recommendations for specific use cases.
(Note: Input/output schemas for each tool are defined in their respective files within
Prerequisites
Node.js (v18+)
Bun (
npm install -g bun)Google Cloud Project with Billing enabled (if using Vertex AI).
Vertex AI API enabled in the GCP project (if using Vertex AI).
Google Cloud Authentication configured in your environment (Application Default Credentials via
gcloud auth application-default loginis recommended, or a Service Account Key) OR Gemini API key.
Setup & Installation
Clone/Place Project: Ensure the project files are in your desired location.
Install Dependencies:
bun installConfigure Environment:
Create a
.envfile in the project root (copy.env.example).Set the required and optional environment variables as described in
.env.example.Set
AI_PROVIDERto either"vertex"or"gemini".If
AI_PROVIDER="vertex",GOOGLE_CLOUD_PROJECTis required.If
AI_PROVIDER="gemini",GEMINI_API_KEYis required.
Build the Server:
bun run buildThis compiles the TypeScript code to
build/index.js.
Usage (Standalone / NPX)
Once published to npm, you can run this server directly using npx:
Alternatively, install it globally:
Note: Running standalone requires setting necessary environment variables (like GOOGLE_CLOUD_PROJECT, GOOGLE_CLOUD_LOCATION, GEMINI_API_KEY, authentication credentials if not using ADC) in your shell environment before executing the command.
Running with Cline
Configure MCP Settings: Add/update the configuration in your Cline MCP settings file (e.g.,
.roo/mcp.json). You have two primary ways to configure the command:Option A: Using Node (Direct Path - Recommended for Development)
This method uses
nodeto run the compiled script directly. It's useful during development when you have the code cloned locally.{ "mcpServers": { "google-ai-search-mcp": { "command": "node", "args": [ "/full/path/to/your/google-ai-search-mcp/build/index.js" // Use absolute path or ensure it's relative to where Cline runs node ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }Important: Ensure the
argspath points correctly to thebuild/index.jsfile. Using an absolute path might be more reliable.
Option B: Using NPX (Requires Package Published to npm)
This method uses
npxto automatically download and run the server package from the npm registry. This is convenient if you don't want to clone the repository.{ "mcpServers": { "google-ai-search-mcp": { "command": "bunx", // Use bunx "args": [ "-y", // Auto-confirm installation "google-ai-search-mcp" // The npm package name ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }Ensure the environment variables in the
envblock are correctly set, either matching.envor explicitly defined here. Remove comments from the actual JSON file.
Restart/Reload Cline: Cline should detect the configuration change and start the server.
Use Tools: You can now use the comprehensive list of Google AI-powered search and documentation tools via Cline.
Development
Watch Mode:
bun run watchBuild:
bun run buildInspector:
bun run inspector
License
This project is licensed under the MIT License - see the LICENSE file for details.