Skip to main content
Glama

mnehmos.trace.mcp

Static analysis engine for detecting schema mismatches between data producers and consumers.

What It Does

Trace MCP finds mismatches between:

  • Backend API responses and frontend expectations

  • MCP tool outputs and client code that uses them

  • Service A's events and Service B's handlers

  • REST endpoints and HTTP client calls

  • GraphQL schemas and Apollo Client hooks

Producer returns: { characterClass: "Fighter", hitPoints: 45 } Consumer expects: { class: "Fighter", hp: 45 } Result: ❌ Mismatch detected before runtime

Features

Core Capabilities

Feature

Description

Schema Extraction

Extract schemas from MCP tools, OpenAPI, TypeScript, tRPC, REST endpoints, GraphQL

Usage Tracing

Track how client code consumes schemas via property access patterns

Mismatch Detection

Compare producer schemas against consumer expectations

Code Generation

Scaffold consumer code from producer schemas (and vice versa)

Watch Mode

Continuous validation on file changes

Phase 2 Capabilities

Feature

Description

Pattern Matcher

Extensible pattern detection supporting call, decorator, property, export, and chain patterns

Import Resolution

Cross-file type resolution with import graph building and circular dependency handling

REST Detection

Express and Fastify endpoint extraction with validation middleware support

HTTP Client Tracing

fetch() and axios call detection with URL extraction and type inference

GraphQL Support

SDL schema parsing, Apollo Server resolvers, and Apollo Client hook tracing

Phase 3 Capabilities

Feature

Description

Python AST Parser

FastAPI, Flask, and MCP tool extraction with Pydantic model support

Go Language Parser

Struct/interface extraction with Chi, Gin, and stdlib HTTP handler detection

gRPC/Protobuf Support

Proto3 parsing with message, enum, service, and streaming RPC extraction

Python HTTP Clients

requests, httpx, and aiohttp library detection with response property tracing

Test Coverage

1047 tests passing across 16 test suites:

Test Suite

Tests

Pattern Matcher

85

REST Detection

87

HTTP Client Tracing

90

GraphQL Support

109

Import Resolution

56

Core (adapters, OpenAPI, tRPC)

234

Python AST

121

gRPC/Protobuf

124

Go Parser

106

Python HTTP Clients

35

Installation

# Clone the repository git clone https://github.com/Mnehmos/mnehmos.trace.mcp.git # Navigate to the directory cd mnehmos.trace.mcp # Install dependencies npm install # Build the project npm run build

Configuration

Add to your MCP client configuration (e.g., claude_desktop_config.json or Roo-Code settings):

{ "mcpServers": { "trace-mcp": { "command": "node", "args": ["/path/to/trace-mcp/dist/index.js"], "env": {} } } }

Supported Formats

Trace MCP supports schema extraction and comparison across multiple specification formats through a pluggable adapter registry.

Summary of Supported Frameworks

Category

Frameworks

API Specs

OpenAPI 3.0+, Swagger

RPC

MCP (Zod), tRPC, gRPC/Protobuf

REST Servers

Express, Fastify, FastAPI, Flask, Chi, Gin, Go stdlib

HTTP Clients

fetch(), axios, requests, httpx, aiohttp

GraphQL

SDL schemas, Apollo Server, Apollo Client

Type Systems

TypeScript interfaces, Zod schemas, Pydantic models, Go structs

Supported Languages

Language

Producer Detection

Consumer Tracing

TypeScript

MCP tools, tRPC, Express, Fastify, GraphQL resolvers

callTool(), fetch, axios, Apollo Client

Python

FastAPI, Flask, MCP tools, Pydantic models

requests, httpx, aiohttp

Go

Chi, Gin, stdlib handlers, structs, interfaces

Protobuf

Messages, enums, services, streaming RPCs


MCP Server Schemas (Zod)

Extract MCP tool definitions from server source code using Zod schemas.

server.tool( "get_character", "Fetch character data", { characterId: z.string().describe("Character ID"), }, async (args) => { // implementation } );

Schema ID Format: endpoint:GET:/tools/get_character@./server.ts


OpenAPI / Swagger Specifications

Extract schemas from OpenAPI 3.0+ specifications, supporting endpoints, request bodies, responses, and component schemas.

openapi: 3.0.0 info: title: Character API version: 1.0.0 paths: /characters/{id}: get: parameters: - name: id in: path schema: type: string responses: '200': content: application/json: schema: $ref: '#/components/schemas/Character' components: schemas: Character: type: object properties: id: type: string name: type: string class: type: string required: - id - name - class

Schema ID Format: endpoint:GET:/characters/{id}@./api.yaml

Usage Example:

const result = await client.callTool("extract_schemas", { rootDir: "./backend", include: ["**/*.openapi.yaml", "**/*.swagger.json"], });

TypeScript Interfaces & Types

Extract exported interfaces, type aliases, and enums from TypeScript source files. Supports utility types including Pick, Omit, Partial, Required, and Record.

export interface Character { id: string; name: string; class: "Fighter" | "Wizard" | "Rogue"; hitPoints: number; stats: { strength: number; dexterity: number; constitution: number; }; } export type ReadonlyCharacter = Readonly<Character>; export enum CharacterClass { Fighter = "Fighter", Wizard = "Wizard", Rogue = "Rogue", }

Schema ID Format: interface:Character@./types.ts

Supported Utility Types:

  • Pick<T, K> - Select properties from interface

  • Omit<T, K> - Exclude properties from interface

  • Partial<T> - Make all properties optional

  • Required<T> - Make all properties required

  • Record<K, T> - Object with specific keys and value type

Usage Example:

const result = await client.callTool("extract_schemas", { rootDir: "./shared", include: ["**/*.ts", "**/*.tsx"], }); // Returns interfaces with ID format: interface:CharacterClass@./types.ts

tRPC Routers

Extract procedure schemas from tRPC routers, including input/output types, query, mutation, and subscription handlers. Handles nested routers and middleware.

import { z } from "zod"; import { publicProcedure, router } from "./trpc"; export const appRouter = router({ users: router({ getById: publicProcedure .input(z.string()) .output(z.object({ id: z.string(), name: z.string(), email: z.string().email(), })) .query(async ({ input }) => { // implementation }), create: publicProcedure .input(z.object({ name: z.string(), email: z.string().email(), })) .output(z.object({ id: z.string(), name: z.string(), email: z.string(), })) .mutation(async ({ input }) => { // implementation }), onChange: publicProcedure .output(z.object({ userId: z.string(), action: z.enum(["created", "updated", "deleted"]), })) .subscription(async () => { // implementation }), }), });

Schema ID Format: trpc:users.getById@./router.ts

Detected Elements:

  • Router definitions (router({ ... }))

  • Nested routers (users: router({ ... }))

  • Procedures (.query(), .mutation(), .subscription())

  • Input schemas (.input(zod_schema))

  • Output schemas (.output(zod_schema))

Usage Example:

const result = await client.callTool("extract_schemas", { rootDir: "./backend/trpc", include: ["**/*.router.ts"], }); // Returns procedures with ID format: trpc:users.getById@./router.ts

REST Endpoints (Express & Fastify)

Extract endpoint schemas from Express and Fastify applications, including route parameters, request bodies, response types, and validation middleware.

Express

import express from "express"; import { z } from "zod"; const app = express(); // Basic route with typed response app.get("/users/:id", (req, res) => { const user: User = getUserById(req.params.id); res.json(user); }); // Route with Zod validation middleware app.post("/users", validate(z.object({ name: z.string(), email: z.string().email(), })), (req, res) => { res.status(201).json({ id: "123", ...req.body }); } ); // Router-based routes const router = express.Router(); router.get("/health", (req, res) => res.json({ status: "ok" })); app.use("/api", router);

Schema ID Format: rest:GET:/users/:id@./app.ts

Fastify

import Fastify from "fastify"; const fastify = Fastify(); // Route with JSON Schema validation fastify.post("/users", { schema: { body: { type: "object", properties: { name: { type: "string" }, email: { type: "string", format: "email" }, }, required: ["name", "email"], }, response: { 201: { type: "object", properties: { id: { type: "string" }, name: { type: "string" }, }, }, }, }, }, async (request, reply) => { return { id: "123", name: request.body.name }; }); // Shorthand methods fastify.get("/health", async () => ({ status: "ok" }));

Schema ID Format: rest:POST:/users@./server.ts

Detected Elements:

  • HTTP methods: GET, POST, PUT, PATCH, DELETE

  • Path parameters (:id, :userId)

  • Request body schemas (Zod, Joi, celebrate, JSON Schema)

  • Response type inference

  • Router prefixes and mounting

Usage Example:

const result = await client.callTool("extract_schemas", { rootDir: "./backend", include: ["**/*.ts"], }); // Returns endpoints with ID format: rest:GET:/users/:id@./routes.ts

HTTP Clients (fetch & axios)

Trace HTTP client calls to detect consumer expectations for API responses.

fetch() API

// Basic fetch with type assertion const response = await fetch("/api/users"); const users: User[] = await response.json(); // fetch with request options const newUser = await fetch("/api/users", { method: "POST", headers: { "Content-Type": "application/json" }, body: JSON.stringify({ name: "Alice" }), }).then(res => res.json()) as CreateUserResponse; // Template literal URLs const userId = "123"; const user = await fetch(`/api/users/${userId}`).then(r => r.json()); // Property access tracking console.log(user.name, user.email, user.profile.avatar);

Detected Elements:

  • URL extraction (static strings, template literals, variables)

  • HTTP method detection

  • Type assertions and generics

  • Property access patterns on response data

axios

import axios from "axios"; // Basic GET request const { data: users } = await axios.get<User[]>("/api/users"); // POST with typed response const response = await axios.post<CreateUserResponse>("/api/users", { name: "Bob", email: "bob@example.com", }); // Instance with base URL const api = axios.create({ baseURL: "https://api.example.com" }); const profile = await api.get<Profile>("/me"); // Destructured property access const { name, email } = response.data;

Schema ID Format: http-client:GET:/api/users@./client.ts

Detected Elements:

  • axios methods: .get(), .post(), .put(), .patch(), .delete()

  • Generic type parameters (axios.get<User>)

  • Instance creation with axios.create()

  • Base URL resolution

  • Response data property access

Usage Example:

const result = await client.callTool("trace_usage", { rootDir: "./frontend/src", include: ["**/*.ts", "**/*.tsx"], }); // Returns HTTP client calls with ID format: http-client:GET:/api/users@./api.ts

GraphQL (SDL & Apollo)

Extract schemas from GraphQL SDL files and trace Apollo Server resolvers and Apollo Client hooks.

SDL Schema Files

# schema.graphql type User { id: ID! name: String! email: String! posts: [Post!]! } type Post { id: ID! title: String! content: String! author: User! } type Query { user(id: ID!): User users: [User!]! post(id: ID!): Post } type Mutation { createUser(name: String!, email: String!): User! createPost(title: String!, content: String!, authorId: ID!): Post! }

Schema ID Format: graphql:Query.user@./schema.graphql

Apollo Server Resolvers

import { ApolloServer } from "@apollo/server"; const resolvers = { Query: { user: async (_, { id }) => { return db.users.findById(id); }, users: async () => { return db.users.findAll(); }, }, Mutation: { createUser: async (_, { name, email }) => { return db.users.create({ name, email }); }, }, User: { posts: async (parent) => { return db.posts.findByAuthor(parent.id); }, }, }; const server = new ApolloServer({ typeDefs, resolvers });

Schema ID Format: graphql-resolver:Query.user@./resolvers.ts

Apollo Client Hooks

import { useQuery, useMutation, gql } from "@apollo/client"; const GET_USER = gql` query GetUser($id: ID!) { user(id: $id) { id name email } } `; const CREATE_USER = gql` mutation CreateUser($name: String!, $email: String!) { createUser(name: $name, email: $email) { id name } } `; function UserProfile({ userId }: { userId: string }) { const { data, loading, error } = useQuery(GET_USER, { variables: { id: userId }, }); const [createUser] = useMutation(CREATE_USER); if (loading) return <Spinner />; if (error) return <Error message={error.message} />; return <div>{data.user.name}</div>; }

Schema ID Format: graphql-client:GetUser@./UserProfile.tsx

Detected Elements:

  • SDL types: scalar, object, input, enum, interface, union

  • Query and Mutation definitions

  • Field arguments and return types

  • Apollo Client hooks: useQuery, useMutation, useLazyQuery, useSubscription

  • Operation names and variables

  • Selected fields in queries

Usage Example:

// Extract GraphQL schemas const schemas = await client.callTool("extract_schemas", { rootDir: "./backend", include: ["**/*.graphql", "**/resolvers.ts"], }); // Trace Apollo Client usage const usage = await client.callTool("trace_usage", { rootDir: "./frontend/src", include: ["**/*.tsx"], }); // Compare for mismatches const report = await client.callTool("compare", { producerDir: "./backend", consumerDir: "./frontend/src", format: "markdown", });

Python (FastAPI, Flask, MCP Tools)

Extract endpoint schemas from Python web frameworks and MCP tool definitions with full Pydantic model support.

FastAPI

from fastapi import FastAPI, APIRouter from pydantic import BaseModel from typing import Optional, List class Character(BaseModel): id: str name: str character_class: str level: int = 1 skills: List[str] = [] class CreateCharacterRequest(BaseModel): name: str character_class: str background: Optional[str] = None app = FastAPI() router = APIRouter(prefix="/api/v1") @app.get("/characters/{character_id}") async def get_character(character_id: str) -> Character: return Character(id=character_id, name="Hero", character_class="Fighter") @router.post("/characters") async def create_character(request: CreateCharacterRequest) -> Character: return Character(id="123", name=request.name, character_class=request.character_class) app.include_router(router)

Schema ID Format: python:GET:/characters/{character_id}@./main.py

Flask

from flask import Flask, Blueprint, request, jsonify app = Flask(__name__) api = Blueprint("api", __name__, url_prefix="/api") @app.route("/health") def health_check(): return jsonify({"status": "ok"}) @api.route("/users/<user_id>", methods=["GET"]) def get_user(user_id): return jsonify({"id": user_id, "name": "Alice"}) @api.route("/users", methods=["POST"]) def create_user(): data = request.get_json() return jsonify({"id": "123", **data}), 201 app.register_blueprint(api)

Schema ID Format: python:GET:/api/users/<user_id>@./app.py

MCP Tools (Python)

from mcp import Server server = Server("character-tools") @server.tool() async def get_character(character_id: str) -> dict: """Fetch character data by ID.""" return {"id": character_id, "name": "Hero", "class": "Fighter"} @mcp.tool() def roll_dice(dice: str, modifier: int = 0) -> dict: """Roll dice with optional modifier.""" return {"result": 15, "expression": dice, "modifier": modifier}

Schema ID Format: python-mcp:get_character@./tools.py

Pydantic Models

from pydantic import BaseModel, Field from typing import Optional, List, Dict, Union, Literal from enum import Enum class CharacterClass(str, Enum): FIGHTER = "Fighter" WIZARD = "Wizard" ROGUE = "Rogue" class Stats(BaseModel): strength: int = Field(ge=1, le=20) dexterity: int = Field(ge=1, le=20) constitution: int = Field(ge=1, le=20) class Character(BaseModel): id: str name: str character_class: CharacterClass level: int = Field(default=1, ge=1, le=20) stats: Stats equipment: List[str] = [] metadata: Optional[Dict[str, str]] = None

Detected Elements:

  • Decorators: @app.get(), @app.post(), @router.*, @app.route(), @blueprint.route()

  • MCP decorators: @mcp.tool(), @server.tool()

  • Pydantic BaseModel classes with field extraction

  • Type annotations: Optional, Union, List, Dict, Literal

  • Enum types

Usage Example:

const result = await client.callTool("extract_schemas", { rootDir: "./backend", include: ["**/*.py"], }); // Returns endpoints with ID format: python:GET:/characters/{id}@./main.py

Go Language (Chi, Gin, stdlib)

Extract struct definitions, interfaces, and HTTP endpoint schemas from Go source files.

Structs with JSON Tags

package models type Character struct { ID string `json:"id"` Name string `json:"name"` Class string `json:"class"` Level int `json:"level"` HitPoints int `json:"hp"` Skills []string `json:"skills,omitempty"` } type Stats struct { Strength int `json:"str"` Dexterity int `json:"dex"` Constitution int `json:"con"` } // Embedded struct type CharacterWithStats struct { Character Stats Stats `json:"stats"` }

Schema ID Format: go-struct:Character@./models/character.go

Interfaces

package services type CharacterService interface { GetByID(id string) (*Character, error) Create(req CreateRequest) (*Character, error) Update(id string, req UpdateRequest) (*Character, error) Delete(id string) error } type Repository interface { Find(query Query) ([]Character, error) Save(character *Character) error }

Schema ID Format: go-interface:CharacterService@./services/character.go

stdlib HTTP Handlers

package main import ( "encoding/json" "net/http" ) func main() { http.HandleFunc("/health", healthHandler) http.HandleFunc("/api/characters", charactersHandler) http.HandleFunc("/api/characters/", characterByIDHandler) http.ListenAndServe(":8080", nil) } func healthHandler(w http.ResponseWriter, r *http.Request) { json.NewEncoder(w).Encode(map[string]string{"status": "ok"}) } func charactersHandler(w http.ResponseWriter, r *http.Request) { switch r.Method { case http.MethodGet: // List characters case http.MethodPost: // Create character } }

Schema ID Format: go-http:GET:/health@./main.go

Chi Router

package main import ( "github.com/go-chi/chi/v5" "net/http" ) func main() { r := chi.NewRouter() r.Get("/health", healthHandler) r.Route("/api/characters", func(r chi.Router) { r.Get("/", listCharacters) r.Post("/", createCharacter) r.Get("/{id}", getCharacter) // Chi param: {id} r.Put("/{id}", updateCharacter) r.Delete("/{id}", deleteCharacter) }) http.ListenAndServe(":8080", r) }

Schema ID Format: go-http:GET:/api/characters/{id}@./main.go

Gin Framework

package main import "github.com/gin-gonic/gin" func main() { r := gin.Default() r.GET("/health", healthHandler) api := r.Group("/api") { api.GET("/characters", listCharacters) api.POST("/characters", createCharacter) api.GET("/characters/:id", getCharacter) // Gin param: :id api.PUT("/characters/:id", updateCharacter) api.DELETE("/characters/:id", deleteCharacter) } r.Run(":8080") }

Schema ID Format: go-http:GET:/api/characters/:id@./main.go

Detected Elements:

  • Struct definitions with JSON tags

  • Embedded structs

  • Interface definitions

  • http.HandleFunc() patterns

  • Chi router: r.Get(), r.Post(), r.Route(), {param} syntax

  • Gin framework: r.GET(), r.POST(), r.Group(), :param syntax

Usage Example:

const result = await client.callTool("extract_schemas", { rootDir: "./backend", include: ["**/*.go"], }); // Returns structs, interfaces, and endpoints

gRPC / Protobuf

Parse Protocol Buffer definitions (proto3) to extract message types, enums, services, and RPC methods.

Basic Messages

syntax = "proto3"; package character; message Character { string id = 1; string name = 2; CharacterClass character_class = 3; int32 level = 4; Stats stats = 5; repeated string skills = 6; } message Stats { int32 strength = 1; int32 dexterity = 2; int32 constitution = 3; }

Schema ID Format: proto-message:character.Character@./character.proto

Enums

enum CharacterClass { CHARACTER_CLASS_UNSPECIFIED = 0; CHARACTER_CLASS_FIGHTER = 1; CHARACTER_CLASS_WIZARD = 2; CHARACTER_CLASS_ROGUE = 3; } enum DamageType { DAMAGE_TYPE_UNSPECIFIED = 0; DAMAGE_TYPE_SLASHING = 1; DAMAGE_TYPE_PIERCING = 2; DAMAGE_TYPE_FIRE = 3; }

Schema ID Format: proto-enum:character.CharacterClass@./character.proto

Oneof and Map Fields

message Equipment { string id = 1; string name = 2; oneof item_type { Weapon weapon = 10; Armor armor = 11; Consumable consumable = 12; } } message Inventory { string character_id = 1; map<string, int32> item_counts = 2; map<string, Equipment> equipped = 3; }

Schema ID Format: proto-message:character.Equipment@./equipment.proto

Services and RPCs

service CharacterService { // Unary RPC rpc GetCharacter(GetCharacterRequest) returns (Character); // Server streaming rpc ListCharacters(ListRequest) returns (stream Character); // Client streaming rpc UploadInventory(stream Item) returns (UploadResponse); // Bidirectional streaming rpc Chat(stream ChatMessage) returns (stream ChatMessage); } message GetCharacterRequest { string id = 1; } message ListRequest { int32 page_size = 1; string page_token = 2; }

Schema ID Format: proto-service:character.CharacterService@./character.proto RPC Format: proto-rpc:CharacterService.GetCharacter@./character.proto

Well-Known Types

import "google/protobuf/timestamp.proto"; import "google/protobuf/duration.proto"; import "google/protobuf/any.proto"; import "google/protobuf/struct.proto"; message CharacterEvent { string character_id = 1; string event_type = 2; google.protobuf.Timestamp created_at = 3; google.protobuf.Duration duration = 4; google.protobuf.Any payload = 5; google.protobuf.Struct metadata = 6; }

Detected Elements:

  • Messages with all field types (scalar, message, enum, repeated)

  • Enums with numeric values

  • oneof field groups

  • map<K, V> fields

  • Nested message definitions

  • Service definitions with all streaming modes:

    • Unary: rpc Method(Request) returns (Response)

    • Server streaming: rpc Method(Request) returns (stream Response)

    • Client streaming: rpc Method(stream Request) returns (Response)

    • Bidirectional: rpc Method(stream Request) returns (stream Response)

  • Well-known types: Timestamp, Duration, Any, Struct

Usage Example:

const result = await client.callTool("extract_schemas", { rootDir: "./proto", include: ["**/*.proto"], }); // Returns messages, enums, and services

Python HTTP Clients (requests, httpx, aiohttp)

Trace HTTP client calls in Python code to detect consumer expectations.

requests Library

import requests # Basic GET response = requests.get("https://api.example.com/characters") characters = response.json() # GET with path parameter character = requests.get(f"https://api.example.com/characters/{char_id}").json() # POST with JSON body new_char = requests.post( "https://api.example.com/characters", json={"name": "Hero", "class": "Fighter"} ).json() # Session with base URL session = requests.Session() session.headers.update({"Authorization": "Bearer token"}) user = session.get("https://api.example.com/me").json() # Property access tracking print(character["name"], character["stats"]["strength"])

Schema ID Format: python-http:GET:/characters@./client.py

httpx Library

import httpx # Sync client response = httpx.get("https://api.example.com/characters") data = response.json() # Async client async with httpx.AsyncClient(base_url="https://api.example.com") as client: response = await client.get("/characters") characters = response.json() response = await client.post("/characters", json={"name": "Hero"}) new_char = response.json()

Schema ID Format: python-http:GET:/characters@./client.py

aiohttp Library

import aiohttp async with aiohttp.ClientSession() as session: # GET request async with session.get("https://api.example.com/characters") as response: characters = await response.json() # POST request async with session.post( "https://api.example.com/characters", json={"name": "Hero", "class": "Fighter"} ) as response: new_char = await response.json() # Property access print(new_char["id"], new_char["name"])

Schema ID Format: python-http:POST:/characters@./client.py

Detected Elements:

  • requests.get(), requests.post(), etc.

  • httpx.get(), httpx.post(), AsyncClient methods

  • aiohttp.ClientSession methods

  • URL extraction (static strings, f-strings)

  • HTTP method detection

  • Response property access (dictionary key access)

Usage Example:

const result = await client.callTool("trace_usage", { rootDir: "./python-client", include: ["**/*.py"], }); // Returns HTTP client calls with property access patterns

Architecture

Pattern Matcher Framework

The pattern matcher provides an extensible system for detecting code patterns across different frameworks. Located in src/patterns/:

src/patterns/ ├── base.ts # BasePattern abstract class ├── types.ts # PatternMatch, PatternContext interfaces ├── registry.ts # PatternRegistry for plugin management ├── extractors.ts # Node extractors for AST traversal ├── errors.ts # Pattern-specific error types ├── rest/ # Express, Fastify patterns ├── http-clients/ # fetch, axios patterns └── graphql/ # Apollo patterns

Supported Pattern Types:

  • Call patterns: Function/method calls (app.get(), fetch())

  • Decorator patterns: TypeScript/Python decorators (@Controller())

  • Property patterns: Object property assignments

  • Export patterns: Module exports (export const router = ...)

  • Chain patterns: Method chaining (router.get().post())

Import Resolution

Cross-file type resolution with import graph building. Located in src/languages/import-resolver.ts:

  • Resolves import { Type } from "./types"

  • Handles barrel exports (export * from)

  • Supports path aliases via tsconfig.json

  • Detects and handles circular dependencies

  • Caches resolved types for performance


Tools Reference

Trace MCP provides 11 tools organized into three categories:

Core Analysis Tools

Tool

Description

extract_schemas

Extract MCP tool definitions from server source code

extract_file

Extract schemas from a single file

trace_usage

Trace how client code uses MCP tools

trace_file

Trace tool usage in a single file

compare

Full pipeline: extract → trace → compare → report

Code Generation Tools

Tool

Description

scaffold_consumer

Generate client code from producer schema

scaffold_producer

Generate server stub from client usage

comment_contract

Add cross-reference comments to validated pairs

Project Management Tools

Tool

Description

init_project

Initialize a trace project with .trace-mcp config

watch

Watch files for changes and auto-revalidate

get_project_status

Get project config, cache state, and validation results


Tool Details

extract_schemas

Extract MCP tool definitions (ProducerSchemas) from server source code. Scans for server.tool() calls and parses their Zod schemas. Also supports OpenAPI, TypeScript interfaces, tRPC routers, REST endpoints, and GraphQL schemas.

Parameters:

  • rootDir (required): Root directory of server source code

  • include: Glob patterns to include (default: **/*.ts)

  • exclude: Glob patterns to exclude (default: node_modules, dist)

Example:

const result = await client.callTool("extract_schemas", { rootDir: "./backend/src", }); // Returns: { success: true, count: 12, schemas: [...] }

extract_file

Extract MCP tool definitions from a single TypeScript file.

Parameters:

  • filePath (required): Path to a TypeScript file


trace_usage

Trace how client code uses MCP tools. Finds callTool() invocations, HTTP client calls, and GraphQL hooks, tracking which properties are accessed on results.

Parameters:

  • rootDir (required): Root directory of consumer source code

  • include: Glob patterns to include

  • exclude: Glob patterns to exclude


trace_file

Trace MCP tool usage in a single TypeScript file.

Parameters:

  • filePath (required): Path to a TypeScript file


compare

Full analysis pipeline: extract producer schemas, trace consumer usage, and compare them to find mismatches.

Parameters:

  • producerDir (required): Path to MCP server source directory

  • consumerDir (required): Path to consumer/client source directory

  • format: Output format (json, markdown, summary)

  • strict: Strict mode - treat missing optional properties as warnings

  • direction: Data flow direction (producer_to_consumer, consumer_to_producer, bidirectional)

Example Output (Markdown):

# mnehmos.trace.mcp Analysis Report **Generated**: 2025-12-11T02:11:48.624Z ## Summary | Metric | Count | | ----------- | ----- | | Total Tools | 12 | | Total Calls | 34 | | Matches | 31 | | Mismatches | 3 | ## Mismatches ### get_character - **Type**: MISSING_PROPERTY - **Description**: Consumer expects "characterClass" but producer has "class" - **Consumer**: ./components/CharacterSheet.tsx:45 - **Producer**: ./tools/character.ts:23

scaffold_consumer

Generate consumer code from a producer schema. Creates TypeScript functions, React hooks, or Zustand actions that correctly call MCP tools.

Parameters:

  • producerDir (required): Path to MCP server source directory

  • toolName (required): Name of the tool to scaffold

  • target: Output format (typescript, javascript, react-hook, zustand-action)

  • includeErrorHandling: Include try/catch error handling (default: true)

  • includeTypes: Include TypeScript type definitions (default: true)

Example Output:

/** * Get character data * @trace-contract CONSUMER * Producer: ./server/character-tools.ts:23 */ export async function getCharacter( client: McpClient, args: GetCharacterArgs ): Promise<GetCharacterResult> { try { const result = await client.callTool("get_character", args); return JSON.parse(result.content[0].text); } catch (error) { console.error("Error calling get_character:", error); throw error; } }

scaffold_producer

Generate producer schema stub from consumer usage. Creates MCP tool definition based on how client code calls it.

Parameters:

  • consumerDir (required): Path to consumer source directory

  • toolName (required): Name of the tool to scaffold

  • includeHandler: Include handler stub (default: true)

Example Output:

import { z } from "zod"; // Tool: get_character // Scaffolded from consumer at ./components/CharacterSheet.tsx:14 // @trace-contract PRODUCER (scaffolded) server.tool( "get_character", "TODO: Add description", { characterId: z.string(), }, async (args) => { // TODO: Implement handler // Consumer expects: name, race, level, stats, characterClass return { content: [ { type: "text", text: JSON.stringify({ name: null, // TODO race: null, // TODO level: null, // TODO }), }, ], }; } );

comment_contract

Add cross-reference comments to validated producer/consumer pairs. Documents the contract relationship in both files.

Parameters:

  • producerDir (required): Path to MCP server source directory

  • consumerDir (required): Path to consumer source directory

  • toolName (required): Name of the validated tool

  • dryRun: Preview without writing (default: true)

  • style: Comment style (jsdoc, inline, block)

Example Preview:

// Producer comment: /* * @trace-contract PRODUCER * Tool: get_character * Consumer: ./components/CharacterSheet.tsx:14 * Args: characterId * Validated: 2025-12-11 */ // Consumer comment: /* * @trace-contract CONSUMER * Tool: get_character * Producer: ./server/character-tools.ts:23 * Required Args: characterId * Validated: 2025-12-11 */

init_project

Initialize a trace project with .trace-mcp config directory for watch mode and caching.

Parameters:

  • projectDir (required): Root directory for the trace project

  • producerPath (required): Relative path to producer/server code

  • consumerPath (required): Relative path to consumer/client code

  • producerLanguage: Language (typescript, python, go, rust, json_schema)

  • consumerLanguage: Language (typescript, python, go, rust, json_schema)

Example:

const result = await client.callTool("init_project", { projectDir: "./my-app", producerPath: "./backend/src", consumerPath: "./frontend/src", }); // Creates: ./my-app/.trace-mcp/config.json

watch

Watch project files for changes and auto-revalidate contracts.

Parameters:

  • projectDir (required): Root directory with .trace-mcp config

  • action: start, stop, status, or poll

Actions:

  • start: Begin watching for file changes

  • stop: Stop watching

  • status: Check current watcher state

  • poll: Get pending events and last validation result


get_project_status

Get the status of a trace project including config, cache state, and last validation result.

Parameters:

  • projectDir (required): Root directory with .trace-mcp config

Example Output:

{ "success": true, "exists": true, "projectDir": "/path/to/project", "config": { "producer": { "path": "./server", "language": "typescript" }, "consumer": { "path": "./client", "language": "typescript" } }, "isWatching": true, "watcherStatus": { "running": true, "pendingChanges": 0 } }

Typical Workflow

1. Quick One-Off Analysis

// Compare backend vs frontend, get markdown report const result = await client.callTool("compare", { producerDir: "./backend/src", consumerDir: "./frontend/src", format: "markdown", });

2. Continuous Validation (Watch Mode)

// Initialize project await client.callTool("init_project", { projectDir: ".", producerPath: "./server", consumerPath: "./client", }); // Start watching await client.callTool("watch", { projectDir: ".", action: "start", }); // Later: poll for results const status = await client.callTool("watch", { projectDir: ".", action: "poll", });

3. Generate Missing Code

// Generate client code from server schema const consumer = await client.callTool("scaffold_consumer", { producerDir: "./server", toolName: "get_character", target: "react-hook", }); // Or generate server stub from client usage const producer = await client.callTool("scaffold_producer", { consumerDir: "./client", toolName: "save_settings", });

4. Extract Multiple Formats

// Extract from MCP server const mcpSchemas = await client.callTool("extract_schemas", { rootDir: "./backend/mcp", include: ["**/*.ts"], }); // Extract from OpenAPI specification const openApiSchemas = await client.callTool("extract_schemas", { rootDir: "./backend", include: ["**/*.openapi.yaml"], }); // Extract from tRPC router const trpcSchemas = await client.callTool("extract_schemas", { rootDir: "./backend/trpc", include: ["**/*.router.ts"], }); // Extract TypeScript interfaces const interfaceSchemas = await client.callTool("extract_schemas", { rootDir: "./shared", include: ["**/*.types.ts"], }); // Extract REST endpoints (Express/Fastify) const restSchemas = await client.callTool("extract_schemas", { rootDir: "./backend/routes", include: ["**/*.ts"], }); // Extract GraphQL schemas const graphqlSchemas = await client.callTool("extract_schemas", { rootDir: "./backend/graphql", include: ["**/*.graphql", "**/resolvers.ts"], });

5. Full-Stack GraphQL Validation

// Extract GraphQL schema and resolvers const producer = await client.callTool("extract_schemas", { rootDir: "./backend", include: ["**/*.graphql", "**/resolvers/**/*.ts"], }); // Trace Apollo Client hooks const consumer = await client.callTool("trace_usage", { rootDir: "./frontend/src", include: ["**/*.tsx"], }); // Compare for schema drift const report = await client.callTool("compare", { producerDir: "./backend", consumerDir: "./frontend/src", format: "markdown", });

Roadmap

Completed

  • MCP tool schema extraction

  • Consumer usage tracing

  • Basic mismatch detection

  • Code scaffolding (consumer & producer)

  • Contract comments

  • Watch mode with auto-revalidation

  • OpenAPI/Swagger adapter support

  • TypeScript interface extraction

  • tRPC router support

  • Pluggable adapter registry

  • Pattern Matcher abstraction (Phase 2)

  • Cross-file import resolution (Phase 2)

  • REST endpoint detection - Express & Fastify (Phase 2)

  • HTTP client tracing - fetch & axios (Phase 2)

  • GraphQL support - SDL, Apollo Server, Apollo Client (Phase 2)

  • Python language support - FastAPI, Flask, MCP tools, Pydantic (Phase 3)

  • Go language support - Chi, Gin, stdlib handlers, structs (Phase 3)

  • gRPC/Protobuf support - proto3, messages, services, streaming (Phase 3)

  • Python HTTP client tracing - requests, httpx, aiohttp (Phase 3)

Planned

  • JSON Schema adapter

  • WebSocket message tracing

  • OpenTelemetry integration

  • Rust language support

  • Java/Kotlin language support

License

MIT

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Mnehmos/mnehmos.trace.mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server