Uses Cheerio as a pinned extractor for HTML content extraction and text processing in the pipeline.
Generates Dockerfile configurations for containerized deployment of exported RAG projects.
Supports pushing exported project repositories to GitHub for version control and deployment workflows.
Supports markdown document extraction and processing as part of the generic document extraction phase.
Provides vector database integration for upserting embeddings and storing indexed content in Milvus.
Generates embeddings using OpenAI's models (e.g., text-embedding-3-small) for vector search and retrieval.
Generates railway.toml deployment configurations for automated deployment of exported RAG projects to Railway.
Generates TypeScript-based MCP servers with search tools as part of project export for deployment.
IndexFoundry-MCP
Deterministic Vector Index Factory - An MCP server for automated, auditable vector database creation from any content source, with deployable project-based workflows.
Tools don't think, they act.
Every tool in this server is:
Deterministic: Same inputs → same outputs
Idempotent: Re-running produces identical artifacts (unless
force: true)Auditable: Every operation produces manifests, hashes, and logs
Composable: Tools can be run independently or chained
Architecture
IndexFoundry provides two complementary workflows:
1. Run-Based Pipeline (Fine-Grained Control)
Individual pipeline runs with isolated artifacts, suitable for experimentation and detailed auditing.
2. Project-Based Workflow (Deployable RAG Applications)
Self-contained projects that generate deployment-ready repositories with MCP server, Dockerfile, and Railway configuration.
Pipeline Phases (Run-Based)
Phase 1: Connect
Fetch content from URLs, sitemaps, folders, or PDFs. Every artifact gets a content hash.
Phase 2: Extract
Convert raw bytes to text using pinned extractors (pdfminer, cheerio, etc.).
Phase 3: Normalize
Chunk text deterministically, enrich metadata (no LLM), and deduplicate.
Phase 4: Index
Generate embeddings with a pinned model, upsert to vector DB.
Phase 5: Serve
Generate OpenAPI spec and optionally start a retrieval API.
Quick Start
Workflow Options
Option 1: Run-Based Pipeline (Detailed Control)
Use individual pipeline tools for fine-grained control over each phase:
Option 2: Project-Based Workflow (Deployable RAG)
Create a self-contained, deployable RAG application:
After export, a project directory contains a complete deployable repository:
Dockerfile- Container configurationrailway.toml- Railway deployment configsrc/index.ts- Generated MCP server with search toolsREADME.md- Project-specific documentation
Push to GitHub and deploy:
Tool Overview
Run-Based Pipeline Tools
Connect Phase
indexfoundry_connect_url- Fetch a single URL with domain allowlistingindexfoundry_connect_sitemap- Crawl a sitemap with URL filteringindexfoundry_connect_folder- Load local files with glob patternsindexfoundry_connect_pdf- Fetch PDF with metadata extraction
Extract Phase
indexfoundry_extract_pdf- PDF to text (layout/plain/OCR modes)indexfoundry_extract_html- HTML to clean text with structure preservationindexfoundry_extract_document- Generic document extraction (markdown, txt, CSV, JSON)
Normalize Phase
indexfoundry_normalize_chunk- Split text into chunks (recursive/paragraph/heading/page/sentence/fixed)indexfoundry_normalize_enrich- Add metadata (language detection, regex tags, section classification)indexfoundry_normalize_dedupe- Remove duplicates (exact/simhash/minhash)
Index Phase
indexfoundry_index_embed- Generate embeddings (OpenAI/Cohere/sentence-transformers/local)indexfoundry_index_upsert- Write to vector DB (Pinecone/Weaviate/Qdrant/Milvus/Chroma/local)indexfoundry_index_build_profile- Configure retrieval (top_k, hybrid search, reranking)
Serve Phase
indexfoundry_serve_openapi- Generate OpenAPI 3.1 specificationindexfoundry_serve_start- Start HTTP search API serverindexfoundry_serve_stop- Stop running API serverindexfoundry_serve_status- Get server statusindexfoundry_serve_query- Query running server directly
Run Utilities
indexfoundry_run_status- Get detailed status of a runindexfoundry_run_list- List all runs with filteringindexfoundry_run_diff- Compare two runs (config, chunks, timing)indexfoundry_run_cleanup- Delete old runs with retention policies
Project-Based Workflow Tools
Project Management
indexfoundry_project_create- Create a new project with embedding and chunk configindexfoundry_project_list- List all projects with optional statisticsindexfoundry_project_get- Get project details, manifest, and sourcesindexfoundry_project_delete- Delete a project (requiresconfirm: true)
Source Management
indexfoundry_project_add_source- Add data source (url/sitemap/folder/pdf) with tags
Build & Query
indexfoundry_project_build- Process all pending sources (fetch, chunk, embed, upsert)indexfoundry_project_query- Search project's vector database (semantic/keyword/hybrid)
Deployment
indexfoundry_project_export- Generate deployment files (Dockerfile, MCP server, railway.toml)
Directory Structures
Run-Based Structure
Project-Based Structure
Configuration
Environment Variables
Project Configuration
Projects store configuration in project.json:
Example Usage
Run-Based Pipeline Example
Project-Based Workflow Example
After export, a project directory contains a deployable repository:
Development
Testing
The MCP server has been validated with end-to-end testing:
✅ Project creation, listing, and retrieval
✅ Source addition (URL, folder, PDF, sitemap)
✅ Build pipeline (fetch → chunk → embed → upsert)
✅ Vector search with semantic, keyword, and hybrid modes
✅ Deployment file generation (Dockerfile, railway.toml, MCP server)
Deployment
Railway Deployment
Create and export a project:
Push to GitHub and connect to Railway
Railway automatically detects
railway.tomland deploys
Docker Deployment
Determinism Guarantees
Sorted inputs: File lists sorted before processing
Stable IDs: Chunk IDs derived from content + position
Content hashes: SHA256 on every artifact
Pinned versions: Extractor versions locked in config
No randomness: No sampling, shuffling, or non-deterministic algorithms
License
MIT