Skip to main content
Glama

Scout Monitoring MCP

Official
by scoutapp
sqlalchemy.md1.7 kB
# Scout APM Setup for SQLAlchemy ## Installation Scout can instrument standalone SQLAlchemy applications. ### Step 1: Install the scout-apm package ```bash pip install scout-apm ``` ### Step 2: Instrument your SQLAlchemy engine ```python from sqlalchemy import create_engine from scout_apm.sqlalchemy import instrument_sqlalchemy from scout_apm.api import Config # Configure Scout Config.set( key="{SCOUT_KEY}", name="{APP_NAME}", monitor=True, ) # Create your SQLAlchemy engine engine = create_engine('postgresql://user:password@localhost/dbname') # Instrument the engine with Scout instrument_sqlalchemy(engine) ``` **Alternative: Using Environment Variables** Set these environment variables: - `SCOUT_MONITOR=true` - `SCOUT_KEY={SCOUT_KEY}` - `SCOUT_NAME={APP_NAME}` Then you don't need to call `Config.set()` - Scout will automatically use the environment variables. ### Step 3: Deploy Deploy your application. It takes approximately five minutes for your data to first appear within the Scout UI. ## Important Notes - For **Flask-SQLAlchemy**, use the Flask integration with `scout_apm.flask.sqlalchemy.instrument_sqlalchemy(db)` - For **Django**, SQLAlchemy instrumentation is automatically applied when using Django ORM - Scout automatically instruments common database drivers including PostgreSQL (psycopg2, asyncpg), MySQL (mysqlclient, PyMySQL), and SQLite ## Heroku Customers If you've installed Scout via the Heroku Addon, the provisioning process automatically sets `SCOUT_MONITOR` and `SCOUT_KEY` via config vars. Only `SCOUT_NAME` is additionally required. ## Documentation For more information, visit: https://scoutapm.com/docs/python/sqlalchemy

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/scoutapp/scout-mcp-local'

If you have feedback or need assistance with the MCP directory API, please join our Discord server