Skip to main content
Glama

Scout Monitoring MCP

Official
by scoutapp
rq.md1.56 kB
# Scout APM Setup for RQ (Redis Queue) ## Installation Scout supports RQ 1.0+. ### Step 1: Install the scout-apm package ```bash pip install scout-apm ``` ### Step 2: Use the Scout RQ worker class **If using RQ directly:** Pass the `--worker-class` argument to the worker command: ```bash rq worker --worker-class scout_apm.rq.Worker myqueue ``` **If using RQ Heroku pattern:** Change your code to use the Scout worker class: ```python from scout_apm.rq import HerokuWorker as Worker ``` **If using Django-RQ:** Use the custom worker setting: ```python RQ = { "WORKER_CLASS": "scout_apm.rq.Worker", } ``` ### Step 3: Configure Scout **If using RQ directly**, create a config file: ```python from scout_apm.api import Config Config.set( key="{SCOUT_KEY}", name="{APP_NAME}", monitor=True, ) ``` Pass the config file with `-c` argument to the worker command. **Alternative: Using Environment Variables** Set these environment variables: - `SCOUT_MONITOR=true` - `SCOUT_KEY={SCOUT_KEY}` - `SCOUT_NAME={APP_NAME}` ### Step 4: Deploy Deploy your application. It takes approximately five minutes for your data to first appear within the Scout UI. Tasks will appear in the "Background Jobs" area of the Scout UI. ## Heroku Customers If you've installed Scout via the Heroku Addon, the provisioning process automatically sets `SCOUT_MONITOR` and `SCOUT_KEY` via config vars. Only `SCOUT_NAME` is additionally required. ## Documentation For more information, visit: https://scoutapm.com/docs/python/other-libraries#rq

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/scoutapp/scout-mcp-local'

If you have feedback or need assistance with the MCP directory API, please join our Discord server