Skip to main content
Glama

Analytical MCP Server

API_REFERENCE.md5.62 kB
# API Reference This document provides detailed specifications for all tools exposed by the Analytical MCP Server. ## Tool Specifications All tools are accessed with the `analytical:` prefix when used through Claude Desktop (e.g., `analytical:analyze_dataset`). ### analytical:analyze_dataset Statistical analysis of datasets. **Parameters:** - `data` (array): Array of numeric values or objects - `analysisType` (string): "summary" or "stats" (default: "summary") **Returns:** Statistical analysis including mean, median, standard deviation, quartiles. **Example:** ```json { "data": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "analysisType": "stats" } ``` ### analytical:decision_analysis Multi-criteria decision analysis with weighted scoring. **Parameters:** - `options` (array): Decision options to analyze - `criteria` (array): Evaluation criteria - `weights` (array, optional): Criterion weights (must match criteria length) **Returns:** Ranked options with scores and analysis. **Example:** ```json { "options": ["Option A", "Option B", "Option C"], "criteria": ["Cost", "Quality", "Speed"], "weights": [0.4, 0.4, 0.2] } ``` ### analytical:advanced_regression_analysis Regression analysis on datasets. **Parameters:** - `data` (array): Data objects for regression - `regressionType` (string): "linear", "polynomial", "logistic", or "multivariate" - `independentVariables` (array): Independent variable names - `dependentVariable` (string): Dependent variable name **Returns:** Regression equation, coefficients, R-squared, model statistics. **Example:** ```json { "data": [ {"sales": 1200, "advertising": 100}, {"sales": 1500, "advertising": 150}, {"sales": 1800, "advertising": 200} ], "regressionType": "linear", "independentVariables": ["advertising"], "dependentVariable": "sales" } ``` ### analytical:hypothesis_testing Statistical hypothesis testing. **Parameters:** - `testType` (string): "t_test_independent", "t_test_paired", "correlation", "chi_square", "anova" - `data` (array): Test data (format depends on test type) - `variables` (array, optional): Variable names for complex data - `alpha` (number, optional): Significance level (default: 0.05) - `alternativeHypothesis` (string, optional): Alternative hypothesis **Returns:** Test statistics, p-values, conclusions. **Example:** ```json { "testType": "t_test_independent", "data": [[23, 45, 67], [34, 56, 78]], "alpha": 0.05 } ``` ### analytical:data_visualization_generator Data visualization specifications. **Parameters:** - `data` (array): Data objects to visualize - `visualizationType` (string): "scatter", "line", "bar", "histogram", "box", "heatmap", "pie" - `variables` (array): Variable names to include **Returns:** Visualization specification with chart configuration. ### analytical:logical_argument_analyzer Logical argument analysis for structure, fallacies, validity, and strength. **Parameters:** - `argument` (string): Argument text to analyze - `analysisDepth` (string, optional): "basic" or "comprehensive" (default: "basic") **Returns:** Argument structure analysis, validity assessment, improvement recommendations. ### analytical:logical_fallacy_detector Logical fallacy detection in text. **Parameters:** - `text` (string): Text to analyze - `confidenceThreshold` (number, optional): Minimum confidence level (0-1, default: 0.7) **Returns:** Detected fallacies with explanations and confidence scores. ### analytical:perspective_shifter Alternative perspectives on problems or situations. **Parameters:** - `problem` (string): Problem or situation to analyze - `currentPerspective` (string, optional): Current perspective or viewpoint - `shiftType` (string, optional): "stakeholder", "discipline", "contrarian" - `numberOfPerspectives` (number, optional): Number of perspectives (default: 3) **Returns:** Alternative perspectives with analysis and insights. ### analytical:verify_research Research claim verification from multiple sources. **Parameters:** - `query` (string): Primary research query - `verificationQueries` (array, optional): Alternative queries for verification - `minConsistencyThreshold` (number, optional): Minimum consistency score (0-1, default: 0.7) - `sources` (number, optional): Number of sources to verify (1-10, default: 3) **Returns:** Verification results with consistency scores and source analysis. ## Error Handling Tools return structured error messages for: - Invalid parameters - Missing required data - External API failures (research tools) - Processing errors Error responses include: - Error type and code - Error message - Resolution suggestions ## Rate Limiting Research tools using external APIs: - Built-in retry logic with exponential backoff - Configurable timeout settings - Graceful degradation when limits are reached ## Logging System ### Logger Implementation - Centralized Logger class in src/utils/logger.ts - MCP protocol compliance (stderr for logs, stdout for protocol communication) - Singleton pattern for consistent instance usage - Log levels: info, warn, error ### Usage Pattern ```typescript import { Logger } from './utils/logger.js'; const logger = Logger.getInstance(); logger.info('Information message'); logger.warn('Warning message'); logger.error('Error message'); ``` ### Utility Script Integration - tools/cache-manager.js: Cache management with Logger integration - tools/check-api-keys.js: API key validation with Logger integration - All utility scripts use Logger instead of console statements - Examples directory preserves console output for demonstration clarity

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/quanticsoul4772/analytical-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server