Skip to main content
Glama

MemOS-MCP

by qinshu1109
Apache 2.0
3
  • Linux
  • Apple
test_intelligent_query.py3.19 kB
#!/usr/bin/env python3 """ 测试MemOS智能查询功能 """ from advanced_examples import AdvancedMemOS, load_env_file def test_intelligent_query(): """测试智能查询功能""" print("🧪 测试MemOS智能查询功能") print("=" * 50) # 加载环境变量 load_env_file() # 初始化MemOS memos = AdvancedMemOS("./test_memos_data") # 添加一些测试数据 print("📝 添加测试数据...") test_memories = [ ("我正在开发一个基于MemOS的智能记忆系统", ["开发", "MemOS", "项目"]), ("使用Claude通过MCP调用MemOS获取上下文", ["Claude", "MCP", "技术架构"]), ("项目目标是实现AI记忆增强对话", ["项目目标", "AI", "对话"]), ("当前使用DeepSeek-V3作为LLM模型", ["技术栈", "LLM", "DeepSeek"]), ("通过SiliconFlow API提供远程LLM服务", ["API", "服务", "SiliconFlow"]), ("记忆数据存储在本地Qdrant向量数据库中", ["存储", "数据库", "Qdrant"]), ("系统支持学习笔记、工作任务等多种记忆类型", ["功能", "记忆类型"]), ] for content, tags in test_memories: memory_id = memos.add_memory(content, tags=tags) print(f" ✅ 添加记忆 #{memory_id}") # 测试智能查询 print("\n🔍 测试智能查询...") test_queries = [ "项目的技术架构是什么?", "当前使用的LLM模型", "MemOS的主要功能", "数据存储方案", "完全不相关的查询测试" ] for query in test_queries: print(f"\n查询: {query}") print("-" * 30) result = memos.intelligent_query(query, max_memories=3) print(f"查询摘要: {result['query_summary']}") print(f"相关记忆数量: {len(result['relevant_memories'])}") if result['relevant_memories']: print("相关记忆:") for i, memory in enumerate(result['relevant_memories'], 1): print(f" {i}. {memory['content']} (相关度: {memory['score']:.2f})") print(f"\nLLM组织的上下文:") print(f" {result['llm_context']}") def test_mcp_format(): """测试MCP格式输出""" print("\n\n🔧 测试MCP格式输出") print("=" * 50) # 加载环境变量 load_env_file() # 初始化MemOS memos = AdvancedMemOS("./test_memos_data") # 模拟MCP调用 query = "项目的技术架构" result = memos.intelligent_query(query, max_memories=3) # 格式化为MCP返回格式 context_text = f"""MemOS查询结果: 查询: {query} {result['query_summary']} LLM组织的上下文: {result['llm_context']} 相关记忆详情: """ for i, memory in enumerate(result['relevant_memories'], 1): tags_str = ", ".join(memory['tags']) if memory['tags'] else "无标签" context_text += f"{i}. {memory['content']} (相关度: {memory['score']:.2f}, 标签: {tags_str})\n" print("MCP返回格式:") print(context_text) if __name__ == "__main__": test_intelligent_query() test_mcp_format()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server