Skip to main content
Glama

MemOS-MCP

by qinshu1109
Apache 2.0
3
  • Linux
  • Apple
qwen_embedding_config.py3.63 kB
#!/usr/bin/env python3 """ Qwen嵌入模型配置 使用Qwen/Qwen3-Embedding-0.6B和Qwen/Qwen3-Reranker-0.6B """ import os import sys from pathlib import Path # 添加src路径 sys.path.insert(0, str(Path(__file__).parent / "src")) from memos.configs.embedder import EmbedderConfigFactory from memos.configs.reranker import RerankerConfigFactory from memos.embedders.factory import EmbedderFactory from memos.rerankers.factory import RerankerFactory def create_qwen_embedder_config(): """创建Qwen嵌入器配置""" config = EmbedderConfigFactory.model_validate({ "backend": "siliconflow", "config": { "model_name_or_path": "Qwen/Qwen3-Embedding-0.6B", "model_name": "Qwen/Qwen3-Embedding-0.6B", "api_key": os.getenv("SILICONFLOW_API_KEY", "sk-ygqlrgrxrypykiiskuspuahkwihhbhhjhazqokntwdzfwqdv"), "api_base": os.getenv("SILICONFLOW_BASE_URL", "https://api.siliconflow.cn/v1"), "embedding_dims": 1024 } }) return config def create_qwen_reranker_config(): """创建Qwen重排器配置""" config = RerankerConfigFactory( backend="siliconflow", config={ "model_name_or_path": "Qwen/Qwen3-Reranker-0.6B", "model_name": "Qwen/Qwen3-Reranker-0.6B", "api_key": os.getenv("SILICONFLOW_API_KEY", "sk-ygqlrgrxrypykiiskuspuahkwihhbhhjhazqokntwdzfwqdv"), "api_base": os.getenv("SILICONFLOW_BASE_URL", "https://api.siliconflow.cn/v1"), "top_k": 10, "max_chunks_per_query": 100 } ) return config def create_qwen_embedder(): """创建Qwen嵌入器实例""" config = create_qwen_embedder_config() embedder = EmbedderFactory.from_config(config) return embedder def create_qwen_reranker(): """创建Qwen重排器实例""" config = create_qwen_reranker_config() reranker = RerankerFactory.from_config(config) return reranker def test_qwen_models(): """测试Qwen模型""" print("🧪 测试Qwen嵌入和重排模型") print("=" * 50) try: # 测试嵌入器 print("🔄 测试Qwen嵌入器...") embedder = create_qwen_embedder() test_texts = [ "这是一个测试文本", "MemOS是一个智能记忆管理系统", "Qwen模型提供高质量的嵌入向量" ] embeddings = embedder.embed(test_texts) print(f"✅ 嵌入器测试成功!向量维度: {len(embeddings[0])}") # 测试重排器 print("🔄 测试Qwen重排器...") reranker = create_qwen_reranker() query = "智能记忆管理系统" documents = [ "MemOS是一个智能记忆管理系统,支持向量搜索", "数据分析平台需要考虑存储和计算", "机器学习模型需要大量训练数据" ] reranked_results = reranker.rerank(query, documents, top_k=3) print(f"✅ 重排器测试成功!返回结果数: {len(reranked_results)}") # 显示重排结果 print("\n📝 重排结果:") for i, (doc, score) in enumerate(reranked_results, 1): print(f"{i}. 分数: {score:.4f} - {doc[:50]}...") return True except Exception as e: print(f"❌ 测试失败: {e}") return False if __name__ == "__main__": success = test_qwen_models() if success: print("\n🎉 Qwen模型测试成功!") else: print("\n❌ Qwen模型测试失败") sys.exit(1)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server